940 resultados para Regional climate modelling
Resumo:
Palaeoproxy records alone are seldom sufficient to provide a full assessment of regional palaeoclimates. To better understand the possible changes in the Mediterranean climate during the Holocene, a series of palaeoclimate integrations for periods spanning the last 12 000 years have been performed and their results diagnosed. These simulations use the HadSM3 global climate model, which is then dynamically downscaled to approximately 50 km using a consistent regional climate model (HadRM3). Changes in the model’s seasonal-mean surface air temperatures and precipitation are discussed at both global and regional scales, along with the physical mechanisms underlying the changes. It is shown that the global model reproduces many of the large-scale features of the mid-Holocene climate (consistent with previous studies) and that the results suggest that many areas within the Mediterranean region were wetter during winter with a stronger seasonal cycle of surface air temperatures during the early Holocene. This precipitation signal in the regional model is strongest in the in the northeast Mediterranean (near Turkey), consistent with low-level wind patterns and earlier palaeosyntheses. It is, however, suggested that further work is required to fully understand the changes in the winter circulation patterns over the Mediterranean region.
Resumo:
The information here represents a compilation of existing and ongoing regional and national climate modelling studies that could be useful in the execution of the regional project The Economics of Climate Change in Caribbean. The report is mainly focused on the sustainable regional efforts that represent opportunities for further developments in climate change scenarios. It describes the different techniques that have been used to model changes in temperature and precipitation in the Caribbean and compares the outputs of these models. Essentially, temperatures are expected to increase while precipitation may increase for countries in the more southerly latitudes, but decrease for more northerly countries (Bahamas, Cuba and Hispaniola) resulting in drought. These changes would present tremendous challenges for the Caribbean subregion and, despite significant progress made in recent years, there is a need for continuous development of climate research and modelling in the subregion, to produce more relevant information for regional and national studies and to overcome the limitations of existing results. This may well be realized through coordination of activities between the Caribbean Community Climate Change Centre (CCCCC), the Institute of Meteorology (INSMET) in Cuba and the University of the West Indies (UWI). These activities will address the implementation of further analyses using available information to generate best practices and to produce useful results. There are also new opportunities for climate research in the region with Coordinated Regional Downscaling Experiment (CORDEX) which is planned to start early next year. It is expected that the participation of various Caribbean institutions like INSMET, UWI, CCCC and the Caribbean Institute for Meteorology and Hydrology in this global project will allow the generation of new and more abundant information.
Resumo:
The regional climate modelling system PRECIS, was run at 25 km horizontal resolution for 150 years (1949-2099) using global driving data from a five member perturbed physics ensemble (based on the coupled global climate model HadCM3). Output from these simulations was used to investigate projected changes in tropical cyclones (TCs) over Vietnam and the South China Sea due to global warming (under SRES scenario A1B). Thirty year climatological mean periods were used to look at projected changes in future (2069-2098) TCs compared to a 1961-1990 baseline. Present day results were compared qualitatively with IBTrACS observations and found to be reasonably realistic. Future projections show a 20-44 % decrease in TC frequency, although the spatial patterns of change differ between the ensemble members, and an increase of 27-53 % in the amount of TC associated precipitation. No statistically significant changes in TC intensity were found, however, the occurrence of more intense TCs (defined as those with a maximum 10 m wind speed > 35 m/s) was found to increase by 3-9 %. Projected increases in TC associated precipitation are likely caused by increased evaporation and availability of atmospheric water vapour, due to increased sea surface and atmospheric temperature. The mechanisms behind the projected changes in TC frequency are difficult to link explicitly; changes are most likely due to the combination of increased static stability, increased vertical wind shear and decreased upward motion, which suggest a decrease in the tropical overturning circulation.
Resumo:
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional “climate modeling” source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
Resumo:
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
Resumo:
This study investigates the possibilities and limitations of using Regional Climate Model (RCM) output for the simulation of alpine permafrost scenarios. It focuses on the general problem of scale mismatch between RCMs and impact models and, in particular, the special challenges that arise when driving an impact model in topographically complex high-mountain environments with the output of an RCM. Two approaches are introduced that take into account the special difficulties in such areas, and thus enable the use of RCM for alpine permafrost scenario modelling. Intended as an initial example, they are applied at the area of Corvatsch (Upper Engadine, Switzerland) in order to demonstrate and discuss the application of the two approaches, rather than to provide an assessment of future changes in permafrost occurrence. There are still many uncertainties and inaccuracies inherent in climate and impact models, which increase when driving one model with the output of the other. Nevertheless, our study shows that the use of RCMs offers new and promising perspectives for the simulation of high-mountain permafrost scenarios
Resumo:
Heavy precipitation affected Central Europe in May/June 2013, triggering damaging floods both on the Danube and the Elbe rivers. Based on a modelling approach with COSMO-CLM, moisture fluxes, backward trajectories, cyclone tracks and precipitation fields are evaluated for the relevant time period 30 May–2 June 2013. We identify potential moisture sources and quantify their contribution to the flood event focusing on the Danube basin through sensitivity experiments: Control simulations are performed with undisturbed ERA-Interim boundary conditions, while multiple sensitivity experiments are driven with modified evaporation characteristics over selected marine and land areas. Two relevant cyclones are identified both in reanalysis and in our simulations, which moved counter-clockwise in a retrograde path from Southeastern Europe over Eastern Europe towards the northern slopes of the Alps. The control simulations represent the synoptic evolution of the event reasonably well. The evolution of the precipitation event in the control simulations shows some differences in terms of its spatial and temporal characteristics compared to observations. The main precipitation event can be separated into two phases concerning the moisture sources. Our modelling results provide evidence that the two main sources contributing to the event were the continental evapotranspiration (moisture recycling; both phases) and the North Atlantic Ocean (first phase only). The Mediterranean Sea played only a minor role as a moisture source. This study confirms the importance of continental moisture recycling for heavy precipitation events over Central Europe during the summer half year.
Resumo:
IEECAS SKLLQG
Resumo:
© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.
Resumo:
We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades, some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations such as the NAO.
Resumo:
Regional climate models are becoming increasingly popular to provide high resolution climate change information for impacts assessments to inform adaptation options. Many countries and provinces requiring these assessments are as small as 200,000 km2 in size, significantly smaller than an ideal domain needed for successful applications of one-way nested regional climate models. Therefore assessments on sub-regional scales (e.g., river basins) are generally carried out using climate change simulations performed for relatively larger regions. Here we show that the seasonal mean hydrological cycle and the day-to-day precipitation variations of a sub-region within the model domain are sensitive to the domain size, even though the large scale circulation features over the region are largely insensitive. On seasonal timescales, the relatively smaller domains intensify the hydrological cycle by increasing the net transport of moisture into the study region and thereby enhancing the precipitation and local recycling of moisture. On daily timescales, the simulations run over smaller domains produce higher number of moderate precipitation days in the sub-region relative to the corresponding larger domain simulations. An assessment of daily variations of water vapor and the vertical velocity within the sub-region indicates that the smaller domains may favor more frequent moderate uplifting and subsequent precipitation in the region. The results remained largely insensitive to the horizontal resolution of the model, indicating the robustness of the domain size influence on the regional model solutions. These domain size dependent precipitation characteristics have the potential to add one more level of uncertainty to the downscaled projections.
Resumo:
Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.
Resumo:
Resumo:
Faced by the realities of a changing climate, decision makers in a wide variety of organisations are increasingly seeking quantitative predictions of regional and local climate. An important issue for these decision makers, and for organisations that fund climate research, is what is the potential for climate science to deliver improvements - especially reductions in uncertainty - in such predictions? Uncertainty in climate predictions arises from three distinct sources: internal variability, model uncertainty and scenario uncertainty. Using data from a suite of climate models we separate and quantify these sources. For predictions of changes in surface air temperature on decadal timescales and regional spatial scales, we show that uncertainty for the next few decades is dominated by sources (model uncertainty and internal variability) that are potentially reducible through progress in climate science. Furthermore, we find that model uncertainty is of greater importance than internal variability. Our findings have implications for managing adaptation to a changing climate. Because the costs of adaptation are very large, and greater uncertainty about future climate is likely to be associated with more expensive adaptation, reducing uncertainty in climate predictions is potentially of enormous economic value. We highlight the need for much more work to compare: a) the cost of various degrees of adaptation, given current levels of uncertainty; and b) the cost of new investments in climate science to reduce current levels of uncertainty. Our study also highlights the importance of targeting climate science investments on the most promising opportunities to reduce prediction uncertainty.