933 resultados para Regime switching
Comparison of Regime Switching, Probit and Logit Models in Dating and Forecasting US Business Cycles
Resumo:
This thesis examines the performance of Canadian fixed-income mutual funds in the context of an unobservable market factor that affects mutual fund returns. We use various selection and timing models augmented with univariate and multivariate regime-switching structures. These models assume a joint distribution of an unobservable latent variable and fund returns. The fund sample comprises six Canadian value-weighted portfolios with different investing objectives from 1980 to 2011. These are the Canadian fixed-income funds, the Canadian inflation protected fixed-income funds, the Canadian long-term fixed-income funds, the Canadian money market funds, the Canadian short-term fixed-income funds and the high yield fixed-income funds. We find strong evidence that more than one state variable is necessary to explain the dynamics of the returns on Canadian fixed-income funds. For instance, Canadian fixed-income funds clearly show that there are two regimes that can be identified with a turning point during the mid-eighties. This structural break corresponds to an increase in the Canadian bond index from its low values in the early 1980s to its current high values. Other fixed-income funds results show latent state variables that mimic the behaviour of the general economic activity. Generally, we report that Canadian bond fund alphas are negative. In other words, fund managers do not add value through their selection abilities. We find evidence that Canadian fixed-income fund portfolio managers are successful market timers who shift portfolio weights between risky and riskless financial assets according to expected market conditions. Conversely, Canadian inflation protected funds, Canadian long-term fixed-income funds and Canadian money market funds have no market timing ability. We conclude that these managers generally do not have positive performance by actively managing their portfolios. We also report that the Canadian fixed-income fund portfolios perform asymmetrically under different economic regimes. In particular, these portfolio managers demonstrate poorer selection skills during recessions. Finally, we demonstrate that the multivariate regime-switching model is superior to univariate models given the dynamic market conditions and the correlation between fund portfolios.
Resumo:
Linear models of property market performance may be misspecified if there exist distinct states where the market drivers behave in different ways. This paper examines the applicability of non-linear regime-based models. A Self Exciting Threshold Autoregressive (SETAR) model is applied to property company share data, using the real rate of interest to define regimes. Distinct regimes appear exhibiting markedly different market behaviour. The model both casts doubt on the specification of conventional linear models and offers the possibility of developing effective trading rules for real estate equities.
Resumo:
Over the last decades, the analysis of the transmissions of international nancial events has become the subject of many academic studies focused on multivariate volatility models volatility. The goal of this study is to evaluate the nancial contagion between stock market returns. The econometric approach employed was originally presented by Pelletier (2006), named Regime Switching Dynamic Correlation (RSDC). This methodology involves the combination of Constant Conditional Correlation Model (CCC) proposed by Bollerslev (1990) with Markov Regime Switching Model suggested by Hamilton and Susmel (1994). A modi cation was made in the original RSDC model, the introduction of the GJR-GARCH model formulated in Glosten, Jagannathan e Runkle (1993), on the equation of the conditional univariate variances to allow asymmetric e ects in volatility be captured. The database was built with the series of daily closing stock market indices in the United States (SP500), United Kingdom (FTSE100), Brazil (IBOVESPA) and South Korea (KOSPI) for the period from 02/01/2003 to 09/20/2012. Throughout the work the methodology was compared with others most widespread in the literature, and the model RSDC with two regimes was de ned as the most appropriate for the selected sample. The set of results provide evidence for the existence of nancial contagion between markets of the four countries considering the de nition of nancial contagion from the World Bank called very restrictive. Such a conclusion should be evaluated carefully considering the wide diversity of de nitions of contagion in the literature.
Resumo:
O presente trabalho busca identificar a ocorrência, duração e probabilidades de transição de diferentes regimes na condução da política monetária no Brasil a partir da implantação do sistema de metas de inflação em 1999. A estimação da função de reação do Banco Central do Brasil é realizada a partir de uma Regra de Taylor forward looking para uma economia aberta, onde utilizamos a metodologia Markov Regime Switching para caracterizar de forma endógena os diferentes regimes de política monetária. Os resultados obtidos indicam a ocorrência de três regimes distintos de política monetária a partir da implantação do sistema de metas de inflação no Brasil. O primeiro regime ocorre durante 21% do período estudado e se caracteriza pela não aderência ao princípio de Taylor e discricionariedade da autoridade monetária, que reage demonstrando maior sensibilidade ao hiato do produto. O segundo regime é o de maior duração, ocorre durante 67% do período estudado, e se caracteriza pela aderência ao princípio de Taylor e equilíbrio nos pesos atribuídos pelo Banco Central tanto ao hiato do produto como ao desvio das expectativas de inflação com relação à meta. Já o terceiro regime ocorre durante 12% do período estudado e se caracteriza não somente pela aderência ao princípio de Taylor, como também por uma maior aversão ao desvio das expectativas de inflação com relação à meta.
Resumo:
In this paper, we extend the debate concerning Credit Default Swap valuation to include time varying correlation and co-variances. Traditional multi-variate techniques treat the correlations between covariates as constant over time; however, this view is not supported by the data. Secondly, since financial data does not follow a normal distribution because of its heavy tails, modeling the data using a Generalized Linear model (GLM) incorporating copulas emerge as a more robust technique over traditional approaches. This paper also includes an empirical analysis of the regime switching dynamics of credit risk in the presence of liquidity by following the general practice of assuming that credit and market risk follow a Markov process. The study was based on Credit Default Swap data obtained from Bloomberg that spanned the period January 1st 2004 to August 08th 2006. The empirical examination of the regime switching tendencies provided quantitative support to the anecdotal view that liquidity decreases as credit quality deteriorates. The analysis also examined the joint probability distribution of the credit risk determinants across credit quality through the use of a copula function which disaggregates the behavior embedded in the marginal gamma distributions, so as to isolate the level of dependence which is captured in the copula function. The results suggest that the time varying joint correlation matrix performed far superior as compared to the constant correlation matrix; the centerpiece of linear regression models.
Resumo:
We evaluate the performance of several specification tests for Markov regime-switching time-series models. We consider the Lagrange multiplier (LM) and dynamic specification tests of Hamilton (1996) and Ljung–Box tests based on both the generalized residual and a standard-normal residual constructed using the Rosenblatt transformation. The size and power of the tests are studied using Monte Carlo experiments. We find that the LM tests have the best size and power properties. The Ljung–Box tests exhibit slight size distortions, though tests based on the Rosenblatt transformation perform better than the generalized residual-based tests. The tests exhibit impressive power to detect both autocorrelation and autoregressive conditional heteroscedasticity (ARCH). The tests are illustrated with a Markov-switching generalized ARCH (GARCH) model fitted to the US dollar–British pound exchange rate, with the finding that both autocorrelation and GARCH effects are needed to adequately fit the data.
Resumo:
This paper analyzes the stationarity of this ratio in the context of a Markov-switching model à la Hamilton (1989) where an asymmetric speed of adjustment is introduced. This particular specification robustly supports a nonlinear reversion process and identifies two relevant episodes: the post-war period from the mid-50’s to the mid-70’s and the so called “90’s boom” period. A three-regime Markov-switching model displays the best regime identification and reveals that only the first part of the 90’s boom (1985-1995) and the post-war period are near-nonstationary states. Interestingly, the last part of the 90’s boom (1996-2000), characterized by a growing price-dividend ratio, is entirely attributed to a regime featuring a highly reverting process.
Resumo:
This paper considers the basic present value model of interest rates under rational expectations with two additional features. First, following McCallum (1994), the model assumes a policy reaction function where changes in the short-term interest rate are determined by the long-short spread. Second, the short-term interest rate and the risk premium processes are characterized by a Markov regime-switching model. Using US post-war interest rate data, this paper finds evidence that a two-regime switching model fits the data better than the basic model. The estimation results also show the presence of two alternative states displaying quite different features.
Resumo:
Although financial theory rests heavily upon the assumption that asset returns are normally distributed, value indices of commercial real estate display significant departures from normality. In this paper, we apply and compare the properties of two recently proposed regime switching models for value indices of commercial real estate in the US and the UK, both of which relax the assumption that observations are drawn from a single distribution with constant mean and variance. Statistical tests of the models' specification indicate that the Markov switching model is better able to capture the non-stationary features of the data than the threshold autoregressive model, although both represent superior descriptions of the data than the models that allow for only one state. Our results have several implications for theoretical models and empirical research in finance.
Resumo:
Nas últimas décadas, a análise dos padrões de propagação internacional de eventos financeiros se tornou o tema de grande parte dos estudos acadêmicos focados em modelos de volatilidade multivariados. Diante deste contexto, objetivo central do presente estudo é avaliar o fenômeno de contágio financeiro entre retornos de índices de Bolsas de Valores de diferentes países a partir de uma abordagem econométrica, apresentada originalmente em Pelletier (2006), sobre a denominação de Regime Switching Dynamic Correlation (RSDC). Tal metodologia envolve a combinação do Modelo de Correlação Condicional Constante (CCC) proposto por Bollerslev (1990) com o Modelo de Mudança de Regime de Markov sugerido por Hamilton e Susmel (1994). Foi feita uma modificação no modelo original RSDC, a introdução do modelo GJR-GARCH formulado em Glosten, Jagannathan e Runkle (1993), na equação das variâncias condicionais individuais das séries para permitir capturar os efeitos assimétricos na volatilidade. A base de dados foi construída com as séries diárias de fechamento dos índices das Bolsas de Valores dos Estados Unidos (SP500), Reino Unido (FTSE100), Brasil (IBOVESPA) e Coréia do Sul (KOSPI) para o período de 02/01/2003 até 20/09/2012. Ao longo do trabalho a metodologia utilizada foi confrontada com outras mais difundidos na literatura, e o modelo RSDC com dois regimes foi definido como o mais apropriado para a amostra selecionada. O conjunto de resultados encontrados fornecem evidências a favor da existência de contágio financeiro entre os mercados dos quatro países considerando a definição de contágio financeiro do Banco Mundial denominada de “muito restritiva”. Tal conclusão deve ser avaliada com cautela considerando a extensa diversidade de definições de contágio existentes na literatura.
Resumo:
The term structure of interest rates is often summarized using a handful of yield factors that capture shifts in the shape of the yield curve. In this paper, we develop a comprehensive model for volatility dynamics in the level, slope, and curvature of the yield curve that simultaneously includes level and GARCH effects along with regime shifts. We show that the level of the short rate is useful in modeling the volatility of the three yield factors and that there are significant GARCH effects present even after including a level effect. Further, we find that allowing for regime shifts in the factor volatilities dramatically improves the model’s fit and strengthens the level effect. We also show that a regime-switching model with level and GARCH effects provides the best out-of-sample forecasting performance of yield volatility. We argue that the auxiliary models often used to estimate term structure models with simulation-based estimation techniques should be consistent with the main features of the yield curve that are identified by our model.
Resumo:
Durland and McCurdy [Durland, J.M., McCurdy, T.H., 1994. Duration-dependent transitions in a Markov model of US GNP growth. Journal of Business and Economic Statistics 12, 279–288] investigated the issue of duration dependence in US business cycle phases using a Markov regime-switching approach, introduced by Hamilton [Hamilton, J., 1989. A new approach to the analysis of time series and the business cycle. Econometrica 57, 357–384] and extended to the case of variable transition parameters by Filardo [Filardo, A.J., 1994. Business cycle phases and their transitional dynamics. Journal of Business and Economic Statistics 12, 299–308]. In Durland and McCurdy’s model duration alone was used as an explanatory variable of the transition probabilities. They found that recessions were duration dependent whilst expansions were not. In this paper, we explicitly incorporate the widely-accepted US business cycle phase change dates as determined by the NBER, and use a state-dependent multinomial Logit modelling framework. The model incorporates both duration and movements in two leading indexes – one designed to have a short lead (SLI) and the other designed to have a longer lead (LLI) – as potential explanatory variables. We find that doing so suggests that current duration is not only a significant determinant of transition out of recessions, but that there is some evidence that it is also weakly significant in the case of expansions. Furthermore, we find that SLI has more informational content for the termination of recessions whilst LLI does so for expansions.
Resumo:
We address asymptotic analysis of option pricing in a regime switching market where the risk free interest rate, growth rate and the volatility of the stocks depend on a finite state Markov chain. We study two variations of the chain namely, when the chain is moving very fast compared to the underlying asset price and when it is moving very slow. Using quadratic hedging and asymptotic expansion, we derive corrections on the locally risk minimizing option price.