939 resultados para Regime Shifts
Resumo:
Various ecological and other complex dynamical systems may exhibit abrupt regime shifts or critical transitions, wherein they reorganize from one stable state to another over relatively short time scales. Because of potential losses to ecosystem services, forecasting such unexpected shifts would be valuable. Using mathematical models of regime shifts, ecologists have proposed various early warning signals of imminent shifts. However, their generality and applicability to real ecosystems remain unclear because these mathematical models are considered too simplistic. Here, we investigate the robustness of recently proposed early warning signals of regime shifts in two well-studied ecological models, but with the inclusion of time-delayed processes. We find that the average variance may either increase or decrease prior to a regime shift and, thus, may not be a robust leading indicator in time-delayed ecological systems. In contrast, changing average skewness, increasing autocorrelation at short time lags, and reddening power spectra of time series of the ecological state variable all show trends consistent with those of models with no time delays. Our results provide insights into the robustness of early warning signals of regime shifts in a broader class of ecological systems.
Resumo:
EXECUTIVE SUMMARY 1. DECADAL-SCALE CLIMATE EVENTS 1.1 Introduction 1.2 Basin-scale Patterns 1.3 Long Time Series in the North Pacific 1.4 Decadal Climate Variability in Ecological Regions of the North Pacific 1.5 Mechanisms 1.6 References 2. COHERENT REGIONAL RESPONSES 2.1 Introduction 2.2 Central North Pacific (CNP) 2.3 California Current System (CCS) 2.4 Gulf of Alaska (GOA) 2.5 Bering Sea and Aleutian Islands 2.6 Western North Pacific (WNP) 2.7 Coherence in Regional Responses to the 1998 Regime Shift 2.8 Climate Indicators for Detecting Regime Shifts 2.9 References 3. IMPLICATIONS FOR THE MANAGEMENT OF MARINE RESOURCES 3.1 Introduction 3.2 Response Time of Biota to Regime Shifts 3.3 Response Time of Management to Regime Shifts 3.4 Provision of Stock Assessment Advice 3.5 Decision Rules 3.6 References 4. SUGGESTED LITERATURE 4.1 Climate Regimes 4.2 Impacts on Lower Trophic Levels 4.3 Impacts on Fish and Higher Trophic Levels 4.4 Impacts on Ecosystems and Possible Mechanisms 4.5 Regimes and Fisheries Management APPENDIX 1: RECENT ECOSYSTEM CHANGES IN THE CENTRAL NORTH PACIFIC A1.1 Introduction A1.2 Physical Oceanography A1.3 Lower Trophic Levels A1.4 Invertebrates A1.5 Fishes A1.6 References APPENDIX 2: RECENT ECOSYSTEM CHANGES IN THE CALIFORNIA CURRENT SYSTEM A2.1 Introduction A2.2 Physical Oceanography A2.3 Lower Trophic Levels A2.4 Invertebrates A2.5 Fishes A2.6 References APPENDIX 3: RECENT ECOSYSTEM CHANGES IN THE GULF OF ALASKA A3.1 Introduction A3.2 Physical Oceanography A3.3 Lower Trophic Levels A3.4 Invertebrates A3.5 Fishes A3.6 Higher Trophic Levels A3.7 Coherence in Gulf of Alaska Fish A3.8 Combined Standardized Indices of Recruitment and Survival Rate A3.9 References APPENDIX 4: RECENT ECOSYSTEM CHANGES IN THE BERING SEA AND ALEUTIAN ISLANDS A4.1 Introduction A4.2 Bering Sea Environmental Variables and Physical Oceanography A4.3 Bering Sea Lower Trophic Levels A4.4 Bering Sea Invertebrates A4.5 Bering Sea Fishes A4.6 Bering Sea Higher Trophic Levels A4.7 Coherence in Bering Sea Fish Responses A4.8 Combined Standardized Indices of Bering Fish Recruitment and Survival Rate A4.9 Aleutian Islands A4.10 References APPENDIX 5: RECENT ECOSYSTEM CHANGES IN THE WESTERN NORTH PACIFIC A5.1 Introduction A5.2 Sea of Okhotsk A5.3 Tsushima Current Region and Kuroshio/Oyashio Current Region A5.4 Bohai Sea, Yellow Sea, and East China Sea A5.5 References (168 page document)
Resumo:
A 4500-year archaeological record of Pacific cod (Gadus macrocephalus) bones from Sanak Island, Alaska, was used to assess the sustainability of the modern fishery and the effects of this fishery on the size of fish caught. Allometric reconstructions of Pacific cod length for eight prehistoric time periods indicated that the current size of the nearshore, commercially fished Pacific cod stocks is statistically unchanged from that of fish caught during 4500 years of subsistence harvesting. This finding indicates that the current Pacific cod fishery that uses selective harvesting technolog ies is a sustainable commercial fishery. Variation in relative Pacific cod abundances provides further insights into the response of this species to punctuated changes in ocean climate (regime shifts) and indicates that Pacific cod stocks can recover from major environmental perturbations. Such palaeofisheries data can extend the short time-series of fisheries data (<50 yr) that form the basis for fisheries management in the Gulf of Alaska and place current trends within the context of centennial- or millennial-scale patterns.
Resumo:
Regime shifts are abrupt changes between contrasting, persistent states of any complex system. The potential for their prediction in the ocean and possible management depends upon the characteristics of the regime shifts: their drivers (from anthropogenic to natural), scale (from the local to the basin) and potential for management action (from adaptation to mitigation). We present a conceptual framework that will enhance our ability to detect, predict and manage regime shifts in the ocean, illustrating our approach with three well-documented examples: the North Pacific, the North Sea and Caribbean coral reefs. We conclude that the ability to adapt to, or manage, regime shifts depends upon their uniqueness, our understanding of their causes and linkages among ecosystem components and our observational capabilities.
Resumo:
The Black Sea ecosystem experienced severe eutrophication-related degradation during the 1970s and 1980s. However, in recent years the Black Sea has shown some signs of recovery which are often attributed to a reduction in nutrient loading. Here, SeaWiFS chlorophyll a (chl a), a proxy for phytoplankton biomass, is used to investigate spatio-temporal patterns in Black Sea phytoplankton dynamics and to explore the potential role of climate in the Black Sea's recovery. Maps of chl a anomalies, calculated relative to the 8 year mean, emphasize spatial and temporal variability of phytoplankton biomass in the Black Sea, particularly between the riverine-influenced Northwest Shelf and the open Black Sea. Evolution of phytoplankton biomass has shown significant spatial variability of persistence of optimal bloom conditions between three major regions of the Black Sea. With the exception of 2001, chl a has generally decreased during our 8 year time-series. However, the winter of 2000–2001 was anomalously warm with low wind stress, resulting in reduced vertical mixing of the water column and retention of nutrients in the photic zone. These conditions were associated with anomalously high levels of chl a throughout much of the open Black Sea during the following spring and summer. The unusual climatic conditions occurring in 2001 may have triggered a shift in the Black Sea's chl a regime. The long-term significance of this recent shift is still uncertain but illustrates a non-linear response to climate forcing that makes future ecosystem changes in the pelagic Black Sea ecosystem difficult to predict.
Resumo:
A regime shift is a large, sudden, and long-lasting change in the dynamics of an ecosystem, affecting multiple trophic levels. There are a growing number of papers that report regime shifts in marine ecosystems. However, the evidence for regime shifts is equivocal, because the methods used to detect them are not yet well developed. We have collated over 300 biological time series from seven marine regions around the UK, covering the ecosystem from phytoplankton to marine mammals. Each time series consists of annual measures of abundance for a single group of organisms over several decades. We summarised the data for each region using the first principal component, weighting either each time series or each biological component (e.g. plankton, fish, benthos) equally. We then searched for regime shifts using Rodionov’s regime shift detection (RSD) method, which found regime shifts in the first principal component for all seven marine regions. However, there are consistent temporal trends in the data for six of the seven regions. Such trends violate the assumptions of RSD. Thus, the regime shifts detected by RSD in six of the seven regions are likely to be artefacts caused by temporal trends. We are therefore developing more appropriate time series models for both single populations and whole communities that will explicitly model temporal trends and should increase our ability to detect true regime shift events.
Resumo:
Regime shifts have been reported in many marine ecosystems, and are often expressed as an abrupt change occurring in multiple physical and biological components of the system. In the Gulf of Alaska, a regime shift in the late 1970s was observed, indicated by an abrupt increase in sea surface temperature and major shifts in the catch of many fish species. This late 1970s regime shift in the Gulf of Alaska was followed by another shift in the late 1980s, not as pervasive as the 1977 shift, but which nevertheless did not return to the prior state. A thorough understanding of the extent and mechanisms leading to such regime shifts is challenged by data paucity in time and space. We investigate the ability of a suite of ocean biogeochemistry models of varying complexity to simulate regime shifts in the Gulf of Alaska by examining the presence of abrupt changes in time series of physical variables (sea surface temperature and mixed layer depth), nutrients and biological variables (chlorophyll, primary productivity and plankton biomass) using change-point analysis. Our study demonstrates that ocean biogeochemical models are capable of simulating the late 1970s shift, indicating an abrupt increase in sea surface temperature forcing followed by an abrupt decrease in nutrients and biological productivity. This predicted shift is consistent among all the models, although some of them exhibit an abrupt transition (i.e. a significant shift from one year to the next), whereas others simulate a smoother transition. Some models further suggest that the late 1980s shift was constrained by changes in mixed layer depth. Our study demonstrates that ocean biogeochemical can successfully simulate regime shifts in the Gulf of Alaska region, thereby providing better understanding of how changes in physical conditions are propagated from lower to upper trophic levels through bottom-up controls.
Resumo:
A modified abstract version of the Comprehensive Aquatic Simulation Model (CASM) is found to exhibit three types of folded bifurcations due to nutrient loading. The resulting bifurcation diagrams account for nonlinear dynamics such as regime shifts and cyclic changes between clear-water state and turbid state that have actually been observed in real lakes. In particular, pulse-perturbation simulations based on the model presented suggest that temporal behaviors of real lakes after biomanipulations can be explained by pulse-dynamics in complex ecosystems, and that not only the amplitude (manipulated abundance of organisms) but also the phase (timing) is important for restoring lakes by biomanipulation. Ecosystem management in terms of possible irreversible changes in ecosystems induced by regime shifts is also discussed. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users’ knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio-ecological systems and to foster adaptive dryland management.
Resumo:
During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.
Resumo:
During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.
Resumo:
Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems.
Resumo:
Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.