991 resultados para Refrigeration systems
Resumo:
A novel single-phase voltage source rectifier capable to achieve High-Power-Factor (HPF) for variable speed refrigeration system application, is proposed in this paper. The proposed system is composed by a single-phase high-power-factor boost rectifier, with two cells in interleave connection, operating in critical conduction mode, and employing a soft-switching technique, controlled by a Field Programmable Gate Array (FPGA), associated with a conventional three-phase IGBT bridge inverter (VSI - Voltage Source Inverter), controlled by a Digital Signal Processor (DSP). The soft-switching technique for the input stage is based on zero-current-switching (ZCS) cells. The rectifier's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the EEC61000-3-2 standards. The digital controller for the output stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at a refrigerator prototype.
Resumo:
Sperm cryopreservation success depends upon the maintenance of spermatozoa fertility potential. Sperm cells must preserve both integrity and functionality of several cell structures. The stabilization phase must allow the exit of water from the sperm cells via osmosis. This study aimed to compare the effect of refrigeration in the commercial refrigerator (CR) and the transport/refrigeration box (TRB) upon the viability of frozen bull sperm diluted in three different extenders (A, B and C). Ten Nellore bulls, Bos taurus indicus maintained in Artificial Insemination Center were used and the spermatozoa samples was assessed for Plasma Membrane Integrity and CASA evaluation. The stabilization phase (5 degrees C/4 hours) was performed in the CR as well as in the TRB, and then samples were exposed to nitrogen vapor during 20 minutes and then plunged into nitrogen. The statistical analysis was done using the variance analysis and the significance level was set at 5%. In the CR the post-thawing parameters for PM and ALH were higher (p < 0.05) in the extender A (glicine egg-yolk) and extender B (glicine egg-free) when compared with extender C (TRIS egg-yolk). As for BCF, STR and LIN, the parameters were higher (p < 0.05) in extender B than in C. Samples that were stabilized in the TRB presented higher post-thawing parameters (p < 0.05) for PM and LIN in extender A and extender B when compared with C. BCF and STR parameters were higher (p < 0.05) in extemder B when compared with C. Extender B samples had higher (p < 0.05) PMI when stabilized in CR. The findings in this experiment enable us to say that both CR and TRB were effective in keeping the viability of post-thawing bull semen.
Resumo:
Comunicação apresentada no CYTEF 2016/VIII Congresso Ibérico | VI Congresso Ibero-Americano de Ciências e Técnicas do Frio, 3-6 maio 2016, Coimbra, Portugal
Resumo:
Mode of access: Internet.
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.
Resumo:
Buildings are one of the most significant infrastructures in modern societies. The construction and operation of modern buildings consume a considerable amount of energy and materials, therefore contribute significantly to the climate change process. In order to reduce the environmental impact of buildings, various green building rating tools have been developed. In this paper, energy uses of the building sector in Australia and over the world are first reviewed. This is then followed by discussions on the development and scopes of various green building rating tools, with a particular focus on the Green Star rating scheme developed in Australia. It is shown that Green Star has significant implications on almost every aspect of the design of HVAC systems, including the selection of air handling and distribution systems, fluid handling systems, refrigeration systems, heat rejection systems and building control systems.
Resumo:
Waitrose has a strong commitment to organic farming but also uses products from 'conventional' farms. At the production stage, Waitrose own-label products are fully traceable, GM-free and all suppliers undergo a detailed assessment programme based on current best practice. Crop suppliers to Waitrose operate an authenticity programme to certify that each assignment is GM-free and produce is screened for pesticide residues. Waitrose sources conventional crops grown from 'Integrated Crop Management Systems' (ICMS) using best horticultural practices. The 'Assured Product' scheme regulates all UK produce to ICMS standards and these audits are being extended worldwide. Business is withdrawn from suppliers who fail the audit. In relation to this, Waitrose has increased its Fairtrade range as in its view 'Buying these products provides direct additional benefit to workers in the developing countries where they are produced and assists marginal producers by giving them access to markets they would not otherwise have'. Currently, Waitrose is developing its own sustainable timber assessment criteria. For livestock, protocols are in place to ensure that animals are reared under the 'most natural conditions possible' and free range produce is offered where animals have access to open space although some produce is not from free-range animals. Waitrose also use a 'Hazards Analysis Critical Points' system to identify food safety hazards that occur at any stage from production to point of sale and to ensure that full measures are in place to control them. In addition, mechanisms have been implemented to reduce fuel use and hence reduce CO2 emissions in the transport of products and staff, and to increase the energy use efficiency of refrigeration systems which account for approximately 60% of Waitrose energy use.
Resumo:
Vapour adsorption refrigeration systems (VAdS) have the advantage of scalability over a wide range of capacities ranging from a few watts to several kilowatts. In the first instance, the design of a system requires the characteristics of the adsorbate-adsorbent pair. Invariably, the void volume in the adsorbent reduces the throughput of the thermal compressor in a manner similar to the clearance volume in a reciprocating compressor. This paper presents a study of the activated carbon +HFC-134a (1,1,1,2-tetrafluoroethane) system as a possible pair for a typical refrigeration application. The aim of this study is to unfold the nexus between the adsorption parameters, achievable packing densities of charcoal and throughput of a thermal compressor. It is shown that for a thermal compressor, the adsorbent should not only have a high surface area, but should also be able to provide a high packing density. Given the adsorption characteristics of an adsorbent-adsorbate pair and the operating conditions, this paper discloses a method for the calculation of the minimum packing density necessary for an effective throughput of a thermal compressor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Thermoacoustic engines convert heat energy into high amplitude sound waves, which is used to drive thermoacoustic refrigerator or pulse tube cryocoolers by replacing the mechanical pistons such as compressors. The increasing interest in thermoacoustic technology is of its potentiality of no exotic materials, low cost and high reliability compared to vapor compression refrigeration systems. The experimental setup has been built based on the linear thermoacoustic model and some simple design parameters. The engines produce acoustic energy at the temperature difference of 325-450 K imposed along the stack of the system. This work illustrates the influence of stack parameters such as plate thickness (PT) and plate spacing (PS) with resonator length on the performance of thermoacoustic engine, which are measured in terms of onset temperature difference, resonance frequency and pressure amplitude using air as a working fluid. The results obtained from the experiments are in good agreement with the theoretical results from DeltaEc. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The thermoacoustic prime mover is part of an interesting class of prime movers that can be used to generate clean energy and to drive cryogenic refrigeration systems. A thermoacoustic prime mover has been built based on the linear thermoacoustic model, which consumes thermal energy and produces acoustic energy. The objective of this article is to design a thermoacoustic prime mover that can be used as a drive for a thermoacoustic refrigerator. It is found that stack plate length and its distance from the closed end have a significant effect on the thermal efficiency of the prime mover. For different stack center positions, there is an optimum length of stack plate that has a significant effect on the performance of the thermoacoustic prime mover in terms of temperature gradient, frequency, and pressure amplitude. In this study, the experiments have been done on the thermoacoustic prime mover by varying stack position and its length with constant blockage ratio and resonator length. The results obtained from the experiments have been compared to the theoretical results acquired from DeltaEc Software.
Resumo:
Using energy more efficiently is essential if carbon emissions are to be reduced. According to the International Energy Agency (IEA), energy efficiency improvements represent the largest and least costly savings in carbon emissions, even when compared with renewables, nuclear power and carbon capture and storage. Yet, how should future priorities be directed? Should efforts be focused on light bulbs or diesel engines, insulating houses or improving coal-fired power stations? Previous attempts to assess energy efficiency options provide a useful snapshot for directing short-term responses, but are limited to only known technologies developed under current economic conditions. Tomorrow's economic drivers are not easy to forecast, and new technical solutions often present in a disruptive manner. Fortunately, the theoretical and practical efficiency limits do not vary with time, allowing the uncertainty of economic forecasts to be avoided and the potential of yet to be discovered efficient designs to be captured. This research aims to provide a rational basis for assessing all future developments in energy efficiency. The global fow of energy through technical devices is traced from fuels to final services, and presented as an energy map to convey visually the scale of energy use. An important distinction is made between conversion devices, which upgrade energy into more useable forms, and passive systems, from which energy is lost as low temperature heat, in exchange for final services. Theoretical efficiency limits are calculated for conversion devices using exergy analysis, and show a 89% potential reduction in energy use. Efforts should be focused on improving the efficiency of, in relative order: biomass burners, refrigeration systems, gas burners and petrol engines. For passive systems, practical utilisation limits are calculated based on engineering models, and demonstrate energy savings of 73% are achievable. Significant gains are found in technical solutions that increase the thermal insulation of building fabrics and reduce the mass of vehicles. The result of this work is a consistent basis for comparing efficiency options, that can enable future technical research and energy policy to be directed towards the actions that will make the most difference.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia/Automação e Eletrónica Industrial