968 resultados para Refraction errors
Resumo:
OBJETIVO: Pesquisar um fator de correção para avaliação do erro refrativo sem a utilização da cicloplegia. MÉTODOS: Foram estudados 623 pacientes (1.246 olhos), de ambos os sexos, com idade entre 3 e 40 anos. As refratometrias estática e dinâmica foram obtidas usando-se o refrator automático Shin-Nippon Accuref-K 9001. A cicloplegia foi obtida com a instilação de uma gota de colírio ciclopentolato a 1%, com refratometria estática 30 minutos após. Os dados foram submetidos à análise estatística usando a técnica do modelo de regressão linear e modelo de regressão múltipla do valor dióptrico com e sem cicloplegia, em função da idade. RESULTADOS: A correlação entre valores dióptricos sem e com cicloplegia quanto ao erro astigmático variou de 81,52% a 92,27%. Quanto ao valor dióptrico esférico, a correlação foi menor (53,57% a 87,78%). O mesmo se observou em relação ao eixo do astigmatismo (28,86% a 58,80%). O modelo de regressão múltipla em função da idade mostrou coeficiente de determinação múltiplo maior para a miopia (86,38%) e astigmatismo (79,79%). O menor coeficiente foi observado para o eixo do astigmatismo (17,70%). CONCLUSÃO: Avaliando-se os erros refrativos com e sem cicloplegia, observou-se alta correlação nas ametropias cilíndricas. Foram desenvolvidas equações matemáticas como fator de correção para refratometrias dos pacientes sem cicloplegia, portadores de ametropias cilíndricas e esféricas.
Resumo:
Mode of access: Internet.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Systematic errors can have a significant effect on GPS observable. In medium and long baselines the major systematic error source are the ionosphere and troposphere refraction and the GPS satellites orbit errors. But, in short baselines, the multipath is more relevant. These errors degrade the accuracy of the positioning accomplished by GPS. So, this is a critical problem for high precision GPS positioning applications. Recently, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique. It uses a natural cubic spline to model the errors as a function which varies smoothly in time. The systematic errors functions, ambiguities and station coordinates, are estimated simultaneously. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method.
Resumo:
The GPS observables are subject to several errors. Among them, the systematic ones have great impact, because they degrade the accuracy of the accomplished positioning. These errors are those related, mainly, to GPS satellites orbits, multipath and atmospheric effects. Lately, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique (PLS). In this method, the errors are modeled as functions varying smoothly in time. It is like to change the stochastic model, in which the errors functions are incorporated, the results obtained are similar to those in which the functional model is changed. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method (CLS). In general, the solution requires a shorter data interval, minimizing costs. The method performance was analyzed in two experiments, using data from single frequency receivers. The first one was accomplished with a short baseline, where the main error was the multipath. In the second experiment, a baseline of 102 km was used. In this case, the predominant errors were due to the ionosphere and troposphere refraction. In the first experiment, using 5 minutes of data collection, the largest coordinates discrepancies in relation to the ground truth reached 1.6 cm and 3.3 cm in h coordinate for PLS and the CLS, respectively, in the second one, also using 5 minutes of data, the discrepancies were 27 cm in h for the PLS and 175 cm in h for the CLS. In these tests, it was also possible to verify a considerable improvement in the ambiguities resolution using the PLS in relation to the CLS, with a reduced data collection time interval. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: To evaluate theoretically three previously published formulae that use intra-operative aphakic refractive error to calculate intraocular lens (IOL) power, not necessitating pre-operative biometry. The formulae are as follows: IOL power (D) = Aphakic refraction x 2.01 [Ianchulev et al., J. Cataract Refract. Surg.31 (2005) 1530]; IOL power (D) = Aphakic refraction x 1.75 [Mackool et al., J. Cataract Refract. Surg.32 (2006) 435]; IOL power (D) = 0.07x(2) + 1.27x + 1.22, where x = aphakic refraction [Leccisotti, Graefes Arch. Clin. Exp. Ophthalmol.246 (2008) 729]. METHODS: Gaussian first order calculations were used to determine the relationship between intra-operative aphakic refractive error and the IOL power required for emmetropia in a series of schematic eyes incorporating varying corneal powers, pre-operative crystalline lens powers, axial lengths and post-operative IOL positions. The three previously published formulae, based on empirical data, were then compared in terms of IOL power errors that arose in the same schematic eye variants. RESULTS: An inverse relationship exists between theoretical ratio and axial length. Corneal power and initial lens power have little effect on calculated ratios, whilst final IOL position has a significant impact. None of the three empirically derived formulae are universally accurate but each is able to predict IOL power precisely in certain theoretical scenarios. The formulae derived by Ianchulev et al. and Leccisotti are most accurate for posterior IOL positions, whereas the Mackool et al. formula is most reliable when the IOL is located more anteriorly. CONCLUSION: Final IOL position was found to be the chief determinant of IOL power errors. Although the A-constants of IOLs are known and may be accurate, a variety of factors can still influence the final IOL position and lead to undesirable refractive errors. Optimum results using these novel formulae would be achieved in myopic eyes.
Resumo:
Purpose: Tilted disc syndrome has been described to be associated with obliquely directed long axis of the disc, oblique direction of vessels, retinal pigment epithelial conus, hypoplasia of retina, visual field defects and myopic astigmatism. This prospective study looks at corneal astigmatism in eyes with a tilted optic disc. Refractive errors in these eyes were also analyzed. Methods: Patients with tilted optic discs were identified prospectively by clinical evaluation (BI, VK). All the patients with obliquely directed long axis of the disc, oblique direction of vessels and retinal pigment epithelial conus were included in the study. Best corrected visual acuity, slit-lamp examination, optic disc measurements, keratometry and refraction were recorded. Results: Twenty four patients (41 eyes) were recruited for the study. Eighteen (75%) patients had bilateral tilted optic discs. Eighteen patients (75%) were females and six (25%) were males. The mean age was 62 years(range 9 – 86 years). 76% of the patients were myopic and 24% hypermetropic. The mean spherical equivalent was –7.49 dioptres (SD 1.7D, range +6D to -17D). The mean corneal astigmatism was 1.09D (SD 0.9D, range 0.25D to 3.80D). The 6 patients who had unilateral, untilted discs were used as a control group to compare their mean corneal astigmatism (1.32 D) with the rest. Student "t" test was performed. ("p" = 0.49). Conclusions: In our study, tilted disc syndrome was found to be largely bilateral and more commonly seen in females. Myopia was the commonest refractive error associated with this clinical condition. However, 24% of patients in this series were hypermetropic. No correlation between the tilting of the optic disc and significant corneal astigmatism was noted as previously reported.
Resumo:
PURPOSE: To investigate the operation of the Shin-Nippon/Grand Seiko autorefractor and whether higher-order aberrations affect its peripheral refraction measurements. METHODS: Information on instrument design, together with parameters and equations used to obtain refraction, was obtained from a patent. A model eye simulating the operating principles was tested with an optical design program. Effects of induced defocus and astigmatism on the retinal image were used to calibrate the model eye to match the patent equations. Coma and trefoil were added to assess their effects on the image. Peripheral refraction of a physical model eye was measured along four visual field meridians with the Shin-Nippon/Grand Seiko autorefractor SRW-5000 and a Hartmann-Shack aberrometer, and simulated autorefractor peripheral refraction was derived using the Zernike coefficients from the aberrometer. RESULTS: In simulation, the autorefractor's square image was changed in size by defocus, into rectangles or parallelograms by astigmatism, and into irregular shapes by coma and trefoil. In the presence of 1.0 D oblique astigmatism, errors in refraction were proportional to the higher-order aberrations, with up to 0.8 D sphere and 1.5 D cylinder for ±0.6 μm of coma or trefoil coefficients with a 5-mm-diameter pupil. For the physical model eye, refraction with the aberrometer was similar in all visual field meridians, but refraction with the autorefractor changed more quickly along one oblique meridian and less quickly along the other oblique meridian than along the horizontal and vertical meridians. Simulations predicted that higher-order aberrations would affect refraction in oblique meridians, and this was supported by the experimental measurements with the physical model eye. CONCLUSIONS: The autorefractor's peripheral refraction measurements are valid for horizontal and vertical field meridians, but not for oblique field meridians. Similar instruments must be validated before being adopted outside their design scope.
Resumo:
Purpose: To establish the prevalence of refractive errors and ocular disorders in preschool and schoolchildren of Ibiporã, Brazil. Methods: A survey of 6 to 12-year-old children from public and private elementary schools was carried out in Ibiporã between 1989 and 1996. Visual acuity measurements were performed by trained teachers using Snellen's chart. Children with visual acuity <0.7 in at least one eye were referred to a complete ophthalmologic examination. Results: 35,936 visual acuity measurements were performed in 13,471 children. 1.966 children (14.59%) were referred to an ophthalmologic examination. Amblyopia was diagnosed in 237 children (1.76%), whereas strabismus was observed in 114 cases (0.84%). Cataract (n=17) (0.12%), chorioretinitis (n=38) (0.28%) and eyelid ptosis (n=6) (0.04%) were also diagnosed. Among the 614 (4.55%) children who were found to have refractive errors, 284 (46.25%) had hyperopia (hyperopia or hyperopic astigmatism), 206 (33.55%) had myopia (myopia or myopic astigmatism) and 124 (20.19%) showed mixed astigmatism. Conclusions: The study determined the local prevalence of amblyopia, refractive errors and eye disorders among preschool and schoolchildren.
Resumo:
In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer, under the presence of observation errors, respective models of a complex system. We focus the specific case in which, at each time step, each agent takes into account its current observation as well as the average of the models of its neighbors. The agents are connected by a network of interaction of Erdos-Renyi or Barabasi-Albert type. First, we investigate situations in which one of the agents has a different probability of observation error (higher or lower). It is shown that the influence of this special agent over the quality of the models inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the effect of the different estimation error is even more pronounced, becoming superlinear. To complement our analysis, we provide the analytical solution of the overall performance of the system. We also investigate the knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of edges between agents (within a community) having higher probability of observation error promotes the loss of quality in the estimation of the agents in the other communities.
Resumo:
Time-resolved Z-scan measurements were performed in a Nd(3+)-doped Sr(0.61)Ba(0.39)Nb(2)O(6) laser crystal through ferroelectric phase transition. Both the differences in electronic polarizability (Delta alpha(p)) and cross section (Delta sigma) of the neodymium ions have been found to be strongly modified in the surroundings of the transition temperature. This observed unusual behavior is concluded to be caused by the remarkable influence that the structural changes associated to the ferro-to-paraelectric phase transition has on the 4f -> 5d transition probabilities. The maximum polarizability change value Delta alpha(p)=1.2x10(-25) cm(3) obtained at room temperature is the largest ever measured for a Nd(3+)-doped transparent material.
Resumo:
Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.
Resumo:
Medication administration errors (MAE) are the most frequent kind of medication errors. Errors with antimicrobial drugs (AD) are relevant because they may interfere inpatient safety and in the development of microbial resistance. The aim of this study is to analyze the AD errors detected in a Brazilian multicentric study of MAE. It was a devcriptive and explorotory study carried out in clinical units in five Brazilian teaching hospitals. The hospitals were investigated during 30 days. MAE were detected by observation technique. MAE were classified in categories: wrong route(WR), wrong patient(WP), wrong dose(WD) wrong time (WT) and unordered drug (UD). AD with MA E were classified by Anatomical-Therapeutical-Chemical Classification System. AD with narrow therapeutic index (NTI) wet-e identified A descriptive statistical analysis was performed using SPSS version 11.5 software. A total of 1500 errors were observed, 277 (18.5%) of them were error with AD. The hopes of AD error were: WT87.7%, QD 6.9%, WR 1.5%, UD 3.2% and WP 0.7%. The number of AD found was 36. The mostly ATC class were fluoroquinolones 13.9%, combinations of penicillin 13.9%, macrolides 8.3% and third-generation cephalosporines 5.6%. The parenteral drug dosage form was associated with 55.6% of AD. 16.7% of AD were NTI. 47.4% of WD and 21.8% WT were with NTI drugs. This study shows that these errors should be considered potential areas for improvement in the medication process and patient safety plus there is requirement to develop rational drug use of AD.
Resumo:
This paper proposes a three-stage offline approach to detect, identify, and correct series and shunt branch parameter errors. In Stage 1 the branches suspected of having parameter errors are identified through an Identification Index (II). The II of a branch is the ratio between the number of measurements adjacent to that branch, whose normalized residuals are higher than a specified threshold value, and the total number of measurements adjacent to that branch. Using several measurement snapshots, in Stage 2 the suspicious parameters are estimated, in a simultaneous multiple-state-and-parameter estimation, via an augmented state and parameter estimator which increases the V - theta state vector for the inclusion of suspicious parameters. Stage 3 enables the validation of the estimation obtained in Stage 2, and is performed via a conventional weighted least squares estimator. Several simulation results (with IEEE bus systems) have demonstrated the reliability of the proposed approach to deal with single and multiple parameter errors in adjacent and non-adjacent branches, as well as in parallel transmission lines with series compensation. Finally the proposed approach is confirmed on tests performed on the Hydro-Quebec TransEnergie network.