883 resultados para Reflection Equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We clarify the extra signs appearing in the graded quantum Yang-Baxter reflection equations, when they are written in a matrix form. We find the boundary K-matrix for the Perk-Schultz six-vertex model, thus give a general solution to the graded reflection equation associated with it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A class of integrable boundary terms for the eight-state supersymmetric U model are presented by solving the graded reflection equations. The boundary model is solved by using the coordinate Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1998 Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Jordan-Wigner fermionization for the one-dimensional Bariev model of three coupled XY chains is formulated. The L-matrix in terms of fermion operators and the R-matrix are presented explicitly. Furthermore, the graded reflection equations and their solutions are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Bariev model with open boundary conditions is introduced and analysed in detail in the framework of the Quantum Inverse Scattering Method. Two classes of independent boundary reflecting K-matrices leading to four different types of boundary fields are obtained by solving the reflection equations. The models are exactly solved by means of the algebraic nested Bethe ansatz method and the four sets or Bethe ansatz equations as well as their corresponding energy expressions are derived. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The integrable open-boundary conditions for the Bariev model of three coupled one-dimensional XY spin chains are studied in the framework of the boundary quantum inverse scattering method. Three kinds of diagonal boundary K-matrices leading to nine classes of possible choices of boundary fields are found and the corresponding integrable boundary terms are presented explicitly. The boundary Hamiltonian is solved by using the coordinate Bethe ansatz technique and the Bethe ansatz equations are derived. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this note we prove an existence and uniqueness result for the solution of multidimensional stochastic delay differential equations with normal reflection. The equations are driven by a fractional Brownian motion with Hurst parameter H > 1/2. The stochastic integral with respect to the fractional Brownian motion is a pathwise Riemann¿Stieltjes integral.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A one-dimensional shock-reflection test problem in the case of slab, cylindrical, or spherical symmetry is discussed. The differential equations for a similarity solution are derived and solved numerically in conjunction with the Rankie-Hugoniot shock relations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A one-dimensional shock (bore) reflection problem is discussed for the two-dimensional shallow water equations with cylindrical symmetry. The differential equations for a similarity solution are derived and solved numerically in conjunction with the Rankine-Hugoniot shock relations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple analytical expression has been derived to calculate the characteristics of a wave that reflects at a stent implanted in a uniform vessel. The stent is characterized by its length and the wave velocity in the stented region. The reflected wave is proportional to the time derivative of the incident wave. The reflection coefficient is a small quantity of the order of the length of the stent divided by the wavelength of the unstented vessel. The results obtained coincide with those obtained numerically by Charonko et al. The main simplifications used are small amplitude of the waves so that equations can be linearized and that the length of the stent is small enough so that the values of the wave functions are nearly uniform along the stent. Both assumptions hold in typical situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we prensent an analysis of non-slanted reflection gratings by using exact solution of the second order differential equation derived from Maxwell equations, in terms of Mathieu functions. The results obtained by using this method will be compared to those obtained by using the well known Kogelnik's Coupled Wave Theory which predicts with great accuracy the response of the efficieny of the zero and first order for volume phase gratings, for both reflection and transmission gratings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scope of this paper is to reflect on the theoretical construction in the constitution of the sociology of health, still called medical sociology in some countries. Two main ideas constitute the basis for this: interdisciplinarity and the degree of articulation in the fields of medicine and sociology. We sought to establish a dialogue with some dimensions - macro/micro, structure/action - that constitute the basis for understanding medicine/health in relation to the social/sociological dimension. The main aspects of these dimensions are initially presented. Straus' two medical sociologies and the theory/application impasses are then addressed, as well as the dilemmas of the sociology of medicine in the 1960s and 1970s. From these analyses the theoretical production before 1970 is placed as a counterpoint. Lastly, the sociology of health is seen in the general context of sociology, which underwent a fragmentation process from 1970 with effects in all subfields of the social sciences. This process involves a rethinking of the theoretical issues in a broadened spectrum of possibilities. The 1980s are highlighted when theoretical issues in the sociology of health are reinvigorated and the issue of interdisciplinarity is once again addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article discusses the possibility of applying Kuhn's concept of paradigm to collective health. The concept and its use in epidemiology, planning and the social sciences are reviewed briefly. The study stresses the multi-paradigmatic character of collective health, resulting from the convergence of multiple epistemologies and the involvement of diverse fields such as the biological sciences, philosophy, the social sciences and humanities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the existence of mild, strict and classical solutions for a class of abstract integro-differential equations in Banach spaces. Some applications to ordinary and partial integro-differential equations are considered.