973 resultados para Reference measurements
Resumo:
Large organic food falls to the deep sea - such as whale carcasses and wood logs - support the development of reduced, sulfidic niches in an otherwise oxygenated, oligotrophic deep-sea environment. These transient hot spot ecosystems may serve the dispersal of highly adapted chemosynthetic organisms such as thiotrophic bivalves and siboglinid worms. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches. Wood colonization experiments were carried out for the duration of one year in the vicinity of a cold seep area in the Nile deep-sea fan (Eastern Mediterranean) at depths of 1690 m. Wood logs were deployed in 2006 during the BIONIL cruise (RV Meteor M70/2 with ROV Quest, Marum, Germany) and sampled in 2007 during the Medeco-2 cruise (RV Pourquoi Pas? with ROV Victor 6000, Ifremer, France). Wood-boring bivalves played a key role in the initial degradation of the wood, the dispersal of wood chips and fecal matter around the wood log, and the provision of colonization surfaces to other organisms. Total oxygen uptake measured with a ROV-operated benthic chamber module was higher at the wood (0.5 m away) in contrast to 10 m away at a reference site (25 mmol m-2 d-1 and 1 mmol m-2 d-1, respectively), indicating an increased activity of sedimentary communities around the wood falls. Bacterial cell numbers associated with wood increased substantially from freshly submerged wood to the wood chip/fecal matter layer next to the wood experiments, as determined with Acridine Orange Direct Counts (AODC) and DAPI-stained counts. Microsensor measurements of sulfide, oxygen and pH were conducted ex situ. Sulfide fluxes were higher at the wood experiments when compared to reference measurements (19 and 32 mmol m-2 d-1 vs. 0 and 16 mmol -2 d-1, respectively). Sulfate reduction (SR) rates at the wood experiments were determined in ex situ incubations (1.3 and 2.0 mmol m-2 d-1) and fell into the lower range of SR rates previously observed from other chemosynthetic habitats at cold seeps. There was no influence of wood deposition on phosphate, silicate and nitrate concentrations, but ammonium concentrations were elevated at the wood chip-sediment boundary layer. Concentrations of dissolved organic carbon were much higher at the wood experiments (wood chip-sediment boundary layer) in comparison to measurements at the reference sites, which may indicate that cellulose degradation was highest under anoxic conditions and hence enabled by anaerobic benthic bacteria, e.g. fermenters and sulfate reducers. Our observations demonstrate that, after one year, the presence of wood at the seafloor had led to the creation of sulfidic niches, comparable to what has been observed at whale falls, albeit at lower rates.
Resumo:
Monte Carlo (MC) method can accurately compute the dose produced by medical linear accelerators. However, these calculations require a reliable description of the electron and/or photon beams delivering the dose, the phase space (PHSP), which is not usually available. A method to derive a phase space model from reference measurements that does not heavily rely on a detailed model of the accelerator head is presented. The iterative optimization process extracts the characteristics of the particle beams which best explains the reference dose measurements in water and air, given a set of constrains
Resumo:
Modeling natural phenomena from 3D information enhances our understanding of the environment. Dense 3D point clouds are increasingly used as highly detailed input datasets. In addition to the capturing techniques of point clouds with LiDAR, low-cost sensors have been released in the last few years providing access to new research fields and facilitating 3D data acquisition for a broader range of applications. This letter presents an analysis of different speleothem features using 3D point clouds acquired with the gaming device Microsoft® Kinect. We compare the Kinect sensor with terrestrial LiDAR reference measurements using the KinFu pipeline for capturing complete 3D objects (< 4m**3). The results demonstrate the suitability of the Kinect to capture flowstone walls and to derive morphometric parameters of cave features. Although the chosen capturing strategy (KinFu) reveals a high correlation (R2=0.92) of stalagmite morphometry along the vertical object axis, a systematic overestimation (22% for radii and 44% for volume) is found. The comparison of flowstone wall datasets predominantly shows low differences (mean of 1 mm with 7 mm standard deviation) of the order of the Kinect depth precision. For both objects the major differences occur at strongly varying and curved surface structures (e.g. with fine concave parts).
Resumo:
Die lokale Anlagerung molekularer Substanzen auf Oberflächen ist technologisch von großem Interesse. Die Beeinflussung selbstassemblierender Materialien bietet dabei große Vorteile, da sie kostengünstig und großflächig angewendet werden kann. Untersuchungen einer solchen Beeinflussung mithilfe von magnetischen Feldern wurden bisher jedoch noch nicht durchgeführt. Ursache hierfür ist das, insbesondere bei der Verwendung von diamagnetischen Substanzen, geringe induzierte magnetische Moment und die daraus resultierenden geringen magnetischen Kräfte. In der vorliegenden Arbeit wurde untersucht, ob es möglich ist, die lokale Anlagerung von selbstassemblierenden, diamagnetischen Substanzen durch die Verwendung von magnetischen Streufeldern zu beeinflussen und somit ein Schichtwachstum bevorzugt in gewünschten Bereichen eines Substrats zu erreichen. Es wurde ein austauschverschobenes Dünnschichtsystem über das Verfahren der ionenbeschuss-induzierten magnetischen Strukturierung mit einem künstlichen Domänenmuster in streifenförmiger Anordnung im Mikrometermaßstab erzeugt. Über experimentelle Untersuchungen wurden die aus diesem Schichtsystem austretenden magnetischen Streufelder erstmals quantifiziert. Die experimentell unvermeidbaren Mittelungen und technischen Limitierungen wurden mithilfe eines theoretischen Modells herausgerechnet, sodass letztlich die resultierende Magnetfeldlandschaft in allen drei Dimensionen über der Probenoberfläche erhalten wurde. Durch die Bestimmung der magnetischen Suszeptibilitäten der hier verwendeten thioethersubstituierten Subphthalocyanin-Derivate konnte somit die Berechnung der induzierten magnetischen Kräfte erfolgen, deren Vergleich mit Literaturwerten eine erfolgreiche Beeinflussung der Anlagerung dieser Substanzen erhoffen ließ. Aufgrund der Kombination diverser, anspruchsvoller Nachweisverfahren konnte der experimentelle Beweis für die erfolgreiche Positionierung der molekularen Substanzen durch die magnetischen Streufelder des Dünnschichtsystems erbracht werden. Zunächst wurde nachgewiesen, dass sich die Subphthalocyanin-Derivate auf der Probenoberfläche befinden und in einer mit der Periode der magnetischen Domänenstruktur korrelierenden Geometrie anlagern. Über Untersuchungen an Synchrotronstrahlungsquellen konnte die magnetische Streifenstruktur mit der Struktur der angelagerten Moleküle überlagert werden, sodass bekannt wurde, dass sich die Moleküle bevorzugt in den magnetisch begünstigten Bereichen anlagern. Um mögliche Einflüsse einer eventuell durch den magnetischen Strukturierungsprozess lokal modifizierten Substratoberfläche als Ursache für die lokale Molekülanlagerung ausschließen zu können, wurden zusätzliche Referenzmessungen durchgeführt. Alle Untersuchungen zeigen, dass die Molekülpositionierung auf der Wechselwirkung der diamagnetischen Substanzen mit den Streufeldern des Substrats zurückzuführen ist. Der im Rahmen dieser Arbeit entwickelte Mechanismus der magnetischen Beeinflussung der lokalen Molekülanlagerung besagt dabei, dass insbesondere die Oberflächendiffusion der selbstassemblierenden Substanz durch die in-plane-Magnetfeldkomponente beeinflusst wird und vermutlich die Nukleationsphase der Selbstassemblierung entscheidend für die lokale Materialabscheidung ist. Es konnte in dieser Arbeit somit gezeigt werden, dass eine Beeinflussung der Selbstassemblierung von diamagnetischen Subphthalocyanin-Derivaten und somit eine lokal bevorzugte Anlagerung dieser Substanzen durch magnetische Streufelder von magnetisch strukturierten austauschverschobenen Dünnschichtsystemen erreicht werden kann. Es resultiert somit eine neue Möglichkeit die technologisch wichtigen Selbstassemblierungsprozesse nun auch über magnetische Streufelder beeinflussen und kontrollieren zu können. Durch die hohe Flexibilität bei den Strukturierungsmöglichkeiten der magnetischen Domänengeometrien der hier verwendeten austauschverschobenen Dünnschichtsysteme resultieren aus den hier gezeigten Ergebnissen vielfältige Anwendungsmöglichkeiten im Bereich der Beschichtungstechnik.
Resumo:
Street-level mean flow and turbulence govern the dispersion of gases away from their sources in urban areas. A suitable reference measurement in the driving flow above the urban canopy is needed to both understand and model complex street-level flow for pollutant dispersion or emergency response purposes. In vegetation canopies, a reference at mean canopy height is often used, but it is unclear whether this is suitable for urban canopies. This paper presents an evaluation of the quality of reference measurements at both roof-top (height = H) and at height z = 9H = 190 m, and their ability to explain mean and turbulent variations of street-level flow. Fast response wind data were measured at street canyon and reference sites during the six-week long DAPPLE project field campaign in spring 2004, in central London, UK, and an averaging time of 10 min was used to distinguish recirculation-type mean flow patterns from turbulence. Flow distortion at each reference site was assessed by considering turbulence intensity and streamline deflection. Then each reference was used as the dependent variable in the model of Dobre et al. (2005) which decomposes street-level flow into channelling and recirculating components. The high reference explained more of the variability of the mean flow. Coupling of turbulent kinetic energy was also stronger between street-level and the high reference flow rather than the roof-top. This coupling was weaker when overnight flow was stratified, and turbulence was suppressed at the high reference site. However, such events were rare (<1% of data) over the six-week long period. The potential usefulness of a centralised, high reference site in London was thus demonstrated with application to emergency response and air quality modelling.
Resumo:
A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and the application of this technology for detecting buried infrastructure is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured, using geophones, along a line traversing the anticipated run of the pipe. Measurements were made at a test site with a single pressurized polyethylene mains water pipe. Time-extended signals were employed to generate the illuminating wave. Cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation were then calculated and summed using a stacking method to generate a cross-sectional image of the ground. The wide cross-correlation peaks caused by high ground attenuation were partially compensated for by using a generalized cross-correlation function called the smoothed coherence transform. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal was used as an additional reference when calculating the generalized cross-correlation functions. For two out of three tests, the pipe was detected, indicating that this technique will be a valuable addition to the Mapping the Underworld armoury.
Resumo:
Primary stability of stems in cementless total hip replacements is recognized to play a critical role for long-term survival and thus for the success of the overall surgical procedure. In Literature, several studies addressed this important issue. Different approaches have been explored aiming to evaluate the extent of stability achieved during surgery. Some of these are in-vitro protocols while other tools are coinceived for the post-operative assessment of prosthesis migration relative to the host bone. In vitro protocols reported in the literature are not exportable to the operating room. Anyway most of them show a good overall accuracy. The RSA, EBRA and the radiographic analysis are currently used to check the healing process of the implanted femur at different follow-ups, evaluating implant migration, occurance of bone resorption or osteolysis at the interface. These methods are important for follow up and clinical study but do not assist the surgeon during implantation. At the time I started my Ph.D Study in Bioengineering, only one study had been undertaken to measure stability intra-operatively. No follow-up was presented to describe further results obtained with that device. In this scenario, it was believed that an instrument that could measure intra-operatively the stability achieved by an implanted stem would consistently improve the rate of success. This instrument should be accurate and should give to the surgeon during implantation a quick answer concerning the stability of the implanted stem. With this aim, an intra-operative device was designed, developed and validated. The device is meant to help the surgeon to decide how much to press-fit the implant. It is essentially made of a torsional load cell, able to measure the extent of torque applied by the surgeon to test primary stability, an angular sensor that measure the relative angular displacement between stem and femur, a rigid connector that enable connecting the device to the stem, and all the electronics for signals conditioning. The device was successfully validated in-vitro, showing a good overall accuracy in discriminating stable from unstable implants. Repeatability tests showed that the device was reliable. A calibration procedure was then performed in order to convert the angular readout into a linear displacement measurement, which is an information clinically relevant and simple to read in real-time by the surgeon. The second study reported in my thesis, concerns the evaluation of the possibility to have predictive information regarding the primary stability of a cementless stem, by measuring the micromotion of the last rasp used by the surgeon to prepare the femoral canal. This information would be really useful to the surgeon, who could check prior to the implantation process if the planned stem size can achieve a sufficient degree of primary stability, under optimal press fitting conditions. An intra-operative tool was developed to this aim. It was derived from a previously validated device, which was adapted for the specific purpose. The device is able to measure the relative micromotion between the femur and the rasp, when a torsional load is applied. An in-vitro protocol was developed and validated on both composite and cadaveric specimens. High correlation was observed between one of the parameters extracted form the acquisitions made on the rasp and the stability of the corresponding stem, when optimally press-fitted by the surgeon. After tuning in-vitro the protocol as in a closed loop, verification was made on two hip patients, confirming the results obtained in-vitro and highlighting the independence of the rasp indicator from the bone quality, anatomy and preserving conditions of the tested specimens, and from the sharpening of the rasp blades. The third study is related to an approach that have been recently explored in the orthopaedic community, but that was already in use in other scientific fields. It is based on the vibration analysis technique. This method has been successfully used to investigate the mechanical properties of the bone and its application to evaluate the extent of fixation of dental implants has been explored, even if its validity in this field is still under discussion. Several studies have been published recently on the stability assessment of hip implants by vibration analysis. The aim of the reported study was to develop and validate a prototype device based on the vibration analysis technique to measure intra-operatively the extent of implant stability. The expected advantages of a vibration-based device are easier clinical use, smaller dimensions and minor overall cost with respect to other devices based on direct micromotion measurement. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The fourth study concerns the application of the device based on the vibration analysis technique to several cases, considering both composite and cadaveric specimens. Different degrees of bone quality were tested, as well as different femur anatomies and several levels of press-fitting were considered. The aim of the study was to verify if it is possible to discriminate between stable and quasi-stable implants, because this is the most challenging detection for the surgeon in the operation room. Moreover, it was possible to validate the measurement protocol by comparing the results of the acquisitions made with the vibration-based tool to two reference measurements made by means of a validated technique, and a validated device. The results highlighted that the most sensitive parameter to stability is the shift in resonance frequency of the stem-bone system, showing high correlation with residual micromotion on all the tested specimens. Thus, it seems possible to discriminate between many levels of stability, from the grossly loosened implant, through the quasi-stable implants, to the definitely stable one. Finally, an additional study was performed on a different type of hip prosthesis, which has recently gained great interest thus becoming fairly popular in some countries in the last few years: the hip resurfacing prosthesis. The study was motivated by the following rationale: although bone-prosthesis micromotion is known to influence the stability of total hip replacement, its effect on the outcome of resurfacing implants has not been investigated in-vitro yet, but only clinically. Thus the work was aimed at verifying if it was possible to apply to the resurfacing prosthesis one of the intraoperative devices just validated for the measurement of the micromotion in the resurfacing implants. To do that, a preliminary study was performed in order to evaluate the extent of migration and the typical elastic movement for an epiphyseal prosthesis. An in-vitro procedure was developed to measure micromotions of resurfacing implants. This included a set of in-vitro loading scenarios that covers the range of directions covered by hip resultant forces in the most typical motor-tasks. The applicability of the protocol was assessed on two different commercial designs and on different head sizes. The repeatability and reproducibility were excellent (comparable to the best previously published protocols for standard cemented hip stems). Results showed that the procedure is accurate enough to detect micromotions of the order of few microns. The protocol proposed was thus completely validated. The results of the study demonstrated that the application of an intra-operative device to the resurfacing implants is not necessary, as the typical micromovement associated to this type of prosthesis could be considered negligible and thus not critical for the stabilization process. Concluding, four intra-operative tools have been developed and fully validated during these three years of research activity. The use in the clinical setting was tested for one of the devices, which could be used right now by the surgeon to evaluate the degree of stability achieved through the press-fitting procedure. The tool adapted to be used on the rasp was a good predictor of the stability of the stem. Thus it could be useful for the surgeon while checking if the pre-operative planning was correct. The device based on the vibration technique showed great accuracy, small dimensions, and thus has a great potential to become an instrument appreciated by the surgeon. It still need a clinical evaluation, and must be industrialized as well. The in-vitro tool worked very well, and can be applied for assessing resurfacing implants pre-clinically.
Resumo:
Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.
Resumo:
The purpose of this study was to validate the accuracy, consistency, and reproducibility/reliability of a new method for correction of pelvic tilt and rotation of radiographic hip parameters for pincer type of femoroacetabular impingement on an anteroposterior pelvic radiograph. Thirty cadaver hips and 100 randomized, blinded AP pelvic radiographs were used for investigation. To detect the software accuracy, the calculated femoral head coverage and classic hip parameters determined with our software were compared to reference measurements based on CT scans or conventional radiographs in a neutral orientation as gold standard. To investigate software consistency, differences among the different parameters for each cadaver pelvis were calculated when reckoned back from a random to the neutral orientation. Intra- and interobserver comparisons were used to analyze the reliability and reproducibility of all parameters. All but two parameters showed a good-to-very good accuracy with the reference measurements. No relevant systematic errors were detected in the Bland-Altman analysis. Software consistency was good-to-very good for all parameters. A good-to-very good reliability and reproducibility was found for a substantial number of the evaluated radiographic acetabular parameters. The software appears to be an accurate, consistent, reliable, and reproducible method for analysis of acetabular pathomorphologies.
Resumo:
BACKGROUND: Sedation protocols, including the use of sedation scales and regular sedation stops, help to reduce the length of mechanical ventilation and intensive care unit stay. Because clinical assessment of depth of sedation is labor-intensive, performed only intermittently, and interferes with sedation and sleep, processed electrophysiological signals from the brain have gained interest as surrogates. We hypothesized that auditory event-related potentials (ERPs), Bispectral Index (BIS), and Entropy can discriminate among clinically relevant sedation levels. METHODS: We studied 10 patients after elective thoracic or abdominal surgery with general anesthesia. Electroencephalogram, BIS, state entropy (SE), response entropy (RE), and ERPs were recorded immediately after surgery in the intensive care unit at Richmond Agitation-Sedation Scale (RASS) scores of -5 (very deep sedation), -4 (deep sedation), -3 to -1 (moderate sedation), and 0 (awake) during decreasing target-controlled sedation with propofol and remifentanil. Reference measurements for baseline levels were performed before or several days after the operation. RESULTS: At baseline, RASS -5, RASS -4, RASS -3 to -1, and RASS 0, BIS was 94 [4] (median, IQR), 47 [15], 68 [9], 75 [10], and 88 [6]; SE was 87 [3], 46 [10], 60 [22], 74 [21], and 87 [5]; and RE was 97 [4], 48 [9], 71 [25], 81 [18], and 96 [3], respectively (all P < 0.05, Friedman Test). Both BIS and Entropy had high variabilities. When ERP N100 amplitudes were considered alone, ERPs did not differ significantly among sedation levels. Nevertheless, discriminant ERP analysis including two parameters of principal component analysis revealed a prediction probability PK value of 0.89 for differentiating deep sedation, moderate sedation, and awake state. The corresponding PK for RE, SE, and BIS was 0.88, 0.89, and 0.85, respectively. CONCLUSIONS: Neither ERPs nor BIS or Entropy can replace clinical sedation assessment with standard scoring systems. Discrimination among very deep, deep to moderate, and no sedation after general anesthesia can be provided by ERPs and processed electroencephalograms, with similar P(K)s. The high inter- and intraindividual variability of Entropy and BIS precludes defining a target range of values to predict the sedation level in critically ill patients using these parameters. The variability of ERPs is unknown.
Resumo:
Measurements of solar radiation over and under sea ice have been performed on various stations in the Arctic Ocean during the Polarstern cruise PS92 (TRANSSIZ) between 19 May and 30 June 2015. All radiation measurements have been performed with Ramses spectral radiometers (Trios, Rastede, Germany). All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors were mounted on a Remotely Operated Vehicle (ROV) and one radiometer was installed on the sea ice for surface reference measurements (solar irradiance). On the ROV, one irradiance sensor (cos-collector) for energy budget calculations and one radiance sensor (9° opening angle) to obtain high resolution spatial variability were installed. Along with the radiation measurements, ROV positions were obtained from acoustic USBL-positioning and all parameters of vehicle depth, distance to the ice and attitude recorded. All times are given in UTC.
Resumo:
Monitoring of BCR-ABL transcripts has become established practice in the management of chronic myeloid leukemia. However, nucleic acid amplification techniques are prone to variations which limit the reliability of real-time quantitative PCR (RQ-PCR) for clinical decision making, highlighting the need for standardization of assays and reporting of minimal residual disease (MRD) data. We evaluated a lyophilized preparation of a leukemic cell line (K562) as a potential quality control reagent. This was found to be relatively stable, yielding comparable respective levels of ABL, GUS and BCR-ABL transcripts as determined by RQ-PCR before and after accelerated degradation experiments as well as following 5 years storage at -20 degrees C. Vials of freeze-dried cells were sent at ambient temperature to 22 laboratories on four continents, with RQ-PCR analyses detecting BCR-ABL transcripts at levels comparable to those observed in primary patient samples. Our results suggest that freeze-dried cells can be used as quality control reagents with a range of analytical instrumentations and could enable the development of urgently needed international standards simulating clinically relevant levels of MRD.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
A collection of 24 seawaters from various worldwide locations and differing depth was culled to measure their chlorine isotopic composition (delta(37)Cl). These samples cover all the oceans and large seas: Atlantic, Pacific, Indian and Antarctic oceans, Mediterranean and Red seas. This collection includes nine seawaters from three depth profiles down to 4560 mbsl. The standard deviation (2sigma) of the delta(37)Cl of this collection is +/-0.08 parts per thousand, which is in fact as large as our precision of measurement ( +/- 0.10 parts per thousand). Thus, within error, oceanic waters seem to be an homogeneous reservoir. According to our results, any seawater could be representative of Standard Mean Ocean Chloride (SMOC) and could be used as a reference standard. An extended international cross-calibration over a large range of delta(37)Cl has been completed. For this purpose, geological fluid samples of various chemical compositions and a manufactured CH3Cl gas sample, with delta(37)Cl from about -6 parts per thousand to +6 parts per thousand have been compared. Data were collected by gas source isotope ratio mass spectrometry (IRMS) at the Paris, Reading and Utrecht laboratories and by thermal ionization mass spectrometry (TIMS) at the Leeds laboratory. Comparison of IRMS values over the range -5.3 parts per thousand to +1.4 parts per thousand plots on the Y=X line, showing a very good agreement between the three laboratories. On 11 samples, the trend line between Paris and Reading Universities is: delta(37)Cl(Reading)= (1.007 +/- 0.009)delta(37)Cl(Paris) - (0.040 +/- 0.025), with a correlation coefficient: R-2 = 0.999. TIMS values from Leeds University have been compared to IRMS values from Paris University over the range -3.0 parts per thousand to +6.0 parts per thousand. On six samples, the agreement between these two laboratories, using different techniques is good: delta(37)Cl(Leeds)=(1.052 +/- 0.038)delta(37)Cl(Paris) + (0.058 +/- 0.099), with a correlation coefficient: R-2 = 0.995. The present study completes a previous cross-calibration between the Leeds and Reading laboratories to compare TIMS and IRMS results (Anal. Chem. 72 (2000) 2261). Both studies allow a comparison of IRMS and TIMS techniques between delta(37)Cl values from -4.4 parts per thousand to +6.0 parts per thousand and show a good agreement: delta(37)Cl(TIMS)=(1.039 +/- 0.023)delta(37)Cl(IRMS)+(0.059 +/- 0.056), with a correlation coefficient: R-2 = 0.996. Our study shows that, for fluid samples, if chlorine isotopic compositions are near 0 parts per thousand, their measurements either by IRMS or TIMS will give comparable results within less than +/- 0.10 parts per thousand, while for delta(37)Cl values as far as 10 parts per thousand (either positive or negative) from SMOC, both techniques will agree within less than +/- 0.30 parts per thousand. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To verify if the reference values of Sleep Apnea cephalometric analysis of North American individuals are similar to the ones of Brazilian individuals presenting no craniofacial anomalies. The study also aimed to identify craniofacial alterations in Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) patients in relation to individuals without clinical characteristics of the disease through this cephalometric analysis. METHOD: It were used 55 lateral cephalograms consisting of 29 for the control group of adult individuals without clinical characteristics of OSAHS and 26 apneic adults. All radiographs were submitted to Sleep Apnea cephalometric analysis through Radiocef Studio 2.0. The standard values of this analysis were compared, by means of z test, to the ones obtained from the control group and these were compared to values from apneic group through Student's t test. RESULTS: There were no significant differences between values obtained from control group and standard values. On the group of OSAHS patients it was observed a decrease on the dimensions of upper airways and an increase on the soft palate length. CONCLUSIONS: The standard values of Sleep Apnea analysis can be used as reference in Brazilian individuals. Besides, through lateral cephalograms it was possible to identify craniofacial alterations in OSAHS patients.