950 resultados para Reef Water Quality Protection Plan
Resumo:
Adaptive management is the pathway to effective conservation, use and management of Australia’s coastal catchments and waterways. While the concepts of adaptive management are not new, applications involving both assessment and management responses are indeed limited at the national and regional scales. This paper outlines the components of a systematic framework for linking scientific knowledge, existing tools, planning approaches and participatory processes to achieve healthy regional partnerships between community, industry, government agencies and science providers to overcome institutional barriers and uncoordinated monitoring. The framework developed by the Coastal CRC (www.coastal.crc.org.au/amf/amf_index.htm) is hierarchical in the way it displays information to allow associated frameworks to be integrated, and represents a construct in which processes, information, decision tools and outcomes are brought together in a structured and transparent way for adaptive catchment and coastal management. This paper proposes how an adaptive management approach could be used to benefit the implementation of the Reef Water Quality Protection Plan (RWQPP).
Resumo:
This report presents the final deliverable from the project titled Conceptual and statistical framework for a water quality component of an integrated report card’ funded by the Marine and Tropical Sciences Research Facility (MTSRF; Project 3.7.7). The key management driver of this, and a number of other MTSRF projects concerned with indicator development, is the requirement for state and federal government authorities and other stakeholders to provide robust assessments of the present ‘state’ or ‘health’ of regional ecosystems in the Great Barrier Reef (GBR) catchments and adjacent marine waters. An integrated report card format, that encompasses both biophysical and socioeconomic factors, is an appropriate framework through which to deliver these assessments and meet a variety of reporting requirements. It is now well recognised that a ‘report card’ format for environmental reporting is very effective for community and stakeholder communication and engagement, and can be a key driver in galvanising community and political commitment and action. Although a report card it needs to be understandable by all levels of the community, it also needs to be underpinned by sound, quality-assured science. In this regard this project was to develop approaches to address the statistical issues that arise from amalgamation or integration of sets of discrete indicators into a final score or assessment of the state of the system. In brief, the two main issues are (1) selecting, measuring and interpreting specific indicators that vary both in space and time, and (2) integrating a range of indicators in such a way as to provide a succinct but robust overview of the state of the system. Although there is considerable research and knowledge of the use of indicators to inform the management of ecological, social and economic systems, methods on how to best to integrate multiple disparate indicators remain poorly developed. Therefore the objective of this project was to (i) focus on statistical approaches aimed at ensuring that estimates of individual indicators are as robust as possible, and (ii) present methods that can be used to report on the overall state of the system by integrating estimates of individual indicators. It was agreed at the outset, that this project was to focus on developing methods for a water quality report card. This was driven largely by the requirements of Reef Water Quality Protection Plan (RWQPP) and led to strong partner engagement with the Reef Water Quality Partnership.
Resumo:
Increases in the rate and extent of lakeshore development along inland lakes in Ontario are adversely impacting water quality. Despite growing awareness, there is a lack of knowledge about the land use policies and tools in place to protect inland lakes in rural Ontario. This research evaluated official plans for water quality protection policies for inland lakes in the County of Renfrew, Ontario to address this gap. The findings suggest that municipalities implicitly link water quality to land use planning policy and fail to incorporate innovative methods to protect water quality.
Resumo:
"Prepared for the Illinois Institute of Natural Resources and the Illinois Environmental Protection Agency"--Cover
Resumo:
"IPEA/WPC/92-220"--Cover.
Resumo:
Increases in the rate and extent of lakeshore development along inland lakes in Ontario are adversely impacting water quality. Despite growing awareness, there is a lack of knowledge about the land use policies and tools in place to protect inland lakes in rural Ontario. This research evaluated official plans for water quality protection policies for inland lakes in the County of Renfrew, Ontario to address this gap. The findings suggest that municipalities implicitly link water quality to land use planning policy and fail to incorporate innovative methods to protect water quality.
Resumo:
Targets for improvements in water quality entering the Great Barrier Reef (GBR) have been set through the Reef Water Quality Protection Plan (Reef Plan). To measure and report on progress towards the targets set a program has been established that combines monitoring and modelling at paddock through to catchment and reef scales; the Paddock to Reef Integrated Monitoring, Modelling and Reporting Program (Paddock to Reef Program). This program aims to provide evidence of links between land management activities, water quality and reef health. Five lines of evidence are used: the effectiveness of management practices to improve water quality; the prevalence of management practice adoption and change in catchment indicators; long-term monitoring of catchment water quality; paddock & catchment modelling to provide a relative assessment of progress towards meeting targets; and finally marine monitoring of GBR water quality and reef ecosystem health. This paper outlines the first four lines of evidence. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Peat wetlands that have been restored from agricultural Land have the potential to act as Long term sources of phosphorus (P) and, therefore have to potenital to accelerate freshwater eutrophication. During a two-year study the water table in a eutrophic fen peat that was managed by pump drainage fluctuated annually between +20 cm and -60 cm relative to ground Level. This precise management was facilitated by the high hydraulic conductivity (K) of the humified peat (1.1 x 10(-5) m s(-1)) below around 60 cm depth. However, during one week of intermittent pumping, as much as 50 g ha(-1) dissolved P entered the pumped ditch. Summer. rainfall events and autumn reflooding also triggered P losses. The P Losses were attributed to the low P sorption capacity (217 mg kg(-1)) of the saturated peat below 60 cm, combined with its high K and the reductive dissolution of Fe bound P.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"July 1975"