893 resultados para Reef Condition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Assessment of the extent of coral bleaching has become an important part of studies that aim to understand the condition of coral reefs. In this study a reference card that uses differences in coral colour was developed as an inexpensive, rapid and non-invasive method for the assessment of bleaching. The card uses a 6 point brightness/saturation scale within four colour hues to record changes in bleaching state. Changes on the scale of 2 units or more reflect a change in symbiont density and chlorophyll a content, and therefore the bleaching state of the coral. When used by non-specialist observers in the field (here on an intertidal reef flat), there was an inter-observer error of I colour score. This technique improves on existing subjective assessment of bleaching state by visual observation and offers the potential for rapid, wide-area assessment of changing coral condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survival during the early life stages of marine species, including nearshore temperate reef fishes, is typically very low, and small changes in mortality rates, due to physiological and environmental conditions, can have marked effects on survival of a cohort and, on a larger scale, on the success of a recruitment season. Moreover, trade offs between larval growth and accumulation of energetic resources prior to settlement are likely to influence growth and survival until this critical period and afterwards. Rockfish recruitment rates are notoriously variable between years and across geographic locations. Monitoring of rates of onshore delivery of pelagic juveniles (defined here as settlement) of two species of nearshore rockfishes, Sebastes caurinus and Sebastes carnatus, was done between 2003-2009 years using artificial collectors placed at San Miguel and Santa Cruz Island, off Southern California coast. I investigated spatiotemporal variation in settlement rate, lipid content, pelagic larval duration and larval growth of the newly settled fishes; I assessed relationships between birth date, larval growth, early life-history characteristics and lipid content at settlement, considering also interspecific differences; finally, I attempt to relate interannual patterns of settlement and of early life history traits to easily accessible, local and regional indices of ocean conditions including in situ ocean temperature and regional upwelling, sea surface temperature (SST) and Chlorophyll-a (Chl-a) concentration. Spatial variations appeared to be of low relevance, while significant interannual differences were detected in settlement rate, pelagic larval duration and larval growth. The amount of lipid content of the newly settled fishes was highly variable in space and time, but did not differ between the two species and did not show any relationships with early life history traits, indicating that no trade off involved these physiological processes or they were masked by high individual variability in different periods of larval life. Significant interspecific differences were found in the timing of parturition and settlement and in larval growth rates, with S. carnatus growing faster and breeding and settling later than S. caurinus. The two species exhibited also different patterns of correlations between larval growth rates and larval duration. S. carnatus larval duration was longer when the growth in the first two weeks post-hatch was faster, while S. caurinus had a shorter larval duration when grew fast in the middle and in the end of larval life, suggesting different larval strategies. Fishes with longer larval durations were longer in size at settlement and exhibited longer planktonic phase in periods of favourable environmental conditions. Ocean conditions had a low explanatory power for interannual variation in early life history traits, but a very high explanatory power for settlement fluctuations, with regional upwelling strength being the principal indicator. Nonetheless, interannual variability in larval duration and growth were related to great phenological changes in upwelling happened during the period of this study and that caused negative consequences at all trophic levels along the California coast. Despite the low explanatory power of the environmental variables used in this study on the variation of larval biological traits, environmental processes were differently related with early life history characteristics analyzed to species, indicating possible species-specific susceptibility to ocean conditions and local environmental adaptation, which should be further investigated. These results have implications for understanding the processes influencing larval and juvenile survival, and consequently recruitment variability, which may be dependent on biological characteristics and environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000 µatm CO2 and a temperature rise of 1.5-3.0 °C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reefs are characterized by enormous carbonate production of the organisms. It is known that rapid calcification is linked to photosynthesis under control of the carbonate equilibrium in seawater. We have established a model simulating the coexisting states of photosynthesis and calcification in order to examine the effects of photosynthesis and calcification on the carbonate system in seawater. Supposing that the rates of photosynthesis and calcification are proportional to concentrations of their inorganic carbon source, the model calculations indicate that three kinds of unique interactions of the organic and inorganic carbon productions are expected. These are photosynthetic enhancement of calcification, calcification which benefits photosynthesis and carbonate dissolution induced by respiration. The first effect appears when the photosynthetic rate is more than approximately 1.2 larger than that of calcification. This effect is caused by the increase of CO3 content and carbonate saturation degree in seawater. If photosynthesis use molecular carbon dioxide, the second effect occurs when the calcification rate is more than approximately 1.6 times larger than that of photosynthesis. Time series model experiments indicate that photosynthesis and calcification potentially enhance each other and that organic and inorganic carbon is produced more efficiently in the coexisting system than in the isolated reactions. These coexisting effects on production enhancement of photosynthesis and calcification are expected to appear not only in the internal pool of organisms but also in a reef environment which is isolated from the outer ocean during low tide. According to the measurements on the fringing type Shiraho Reef in the Ryukyu Islands, the diurnal change of water properties (pH, total alkalinity, total carbon dioxide and carbonate saturation degree) were conspicuous. This environment offers an appropriate condition for the appearance of these coexisting effects. The photosynthetic enhancement of calcification and the respiratory inducement of decalcification were observed during day-time and night-time slack-water periods, respectively. These coexisting effects, especially the photosynthetic enhancement of calcification, appear to play important roles for fluorishing coral reef communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differences in the sensitivity of marine species to ocean acidification will influence the structure of marine communities in the future. Reproduction is critical for individual and population success, yet is energetically expensive and could be adversely affected by rising CO2 levels in the ocean. We investigated the effects of projected future CO2 levels on reproductive output of two species of coral reef damselfish, Amphiprion percula and Acanthochromis polyacanthus. Adult breeding pairs were maintained at current-day control (446 µatm), moderate (652 µatm) or high CO2 (912 µatm) for a 9-month period that included the summer breeding season. The elevated CO2 treatments were consistent with CO2 levels projected by 2100 under moderate (RCP6) and high (RCP8) emission scenarios. Reproductive output increased in A. percula, with 45-75 % more egg clutches produced and a 47-56 % increase in the number of eggs per clutch in the two elevated CO2 treatments. In contrast, reproductive output decreased at high CO2 in Ac. polyacanthus, with approximately one-third as many clutches produced compared with controls. Egg survival was not affected by CO2 for A. percula, but was greater in elevated CO2 for Ac. polyacanthus. Hatching success was also greater for Ac. polyacanthus at elevated CO2, but there was no effect of CO2 treatments on offspring size. Despite the variation in reproductive output, body condition of adults did not differ between control and CO2 treatments in either species. Our results demonstrate different effects of high CO2 on fish reproduction, even among species within the same family. A greater understanding of the variation in effects of ocean acidification on reproductive performance is required to predict the consequences for future populations of marine organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures, 28.5°C (+0.0°C), 30.0°C (+1.5°C) and 31.5°C (+3.0°C), cross-factored with 3 CO2 levels, a current day control (417 µatm) and moderate (644 µatm) and high (1134 µatm) treatments consistent with the range of CO2 projections for the year 2100 under RCP8.5. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17beta-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or CO2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17beta-estradiol concentrations, suggesting that declines in reproduction with increasing temperature were due to the thermal sensitivity of reproductive hormones rather than a reduction in energy available for reproduction. Our results show that elevated temperature exerts a stronger influence than high CO2 on reproduction in A. melanopus. Understanding how these two environmental variables interact to affect the reproductive performance of marine organisms will be important for predicting the future impacts of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Queensland Environmental Protection Agency monitored water quality at 133 sites in North Queensland waterways between Cooktown and Bundaburg from 1992 to 2001. Condition of the waterways was rated by comparing recent data with the Queensland Water Quality Guidelines. Long-term trends were analysed using a censored regression technique that incorporates the effects of flow, temperature, seasonality and allows for long-term non-linear trends. Many sites were in good condition; those in poor condition were usually impacted by point source discharges; those in moderate condition were usually impacted by agricultural land use. There were no consistent long-term trends across the whole region. Recommendations for future programs include incorporating pressure indicators, ensuring high standards of quality assurance, including covariates such as rainfall in trend assessment and continuing programs over more than 10 years to allow detection of trends due to changes in land-use. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reefs face unprecedented threats throughout most of their range. Poorly planned coastal development has contributed increased nutrients and sewage contamination to coastal waters, smothering some corals and contributing to overgrowth by macroalgae. My approach to assessing the degree to which coral reef ecosystems have been influenced by terrestrial and anthropogenic organic carbon inputs is through the use of carbon (C) and nitrogen (N) stable isotopes and lipid biomarkers in a marine protected area, the Coral Reef System of Veracruz: Parque Nacional Sistema Arrecifal Veracruzano (PNSAV) in the southwest Gulf of Mexico. Firstly, I used a C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor to reveal the primary producer sources that fuel the coral reef food web. Secondly, I used lipid classes, FA and sterol biomarkers to determine production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, I used coprostanol to determine pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential metabolite FA for marine fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while seagrass non-essential FA are transferred to the entire food web mainly in the rainy season. Sea urchins may be the main consumers of brown macroalgae, especially in the dry season, while surgeon fish prefer red algae in both dry and rainy seasons. C and N isotopic values and the ratio C:N suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and seagrass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly in the rainy season. The nearest river to the PNSAV was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. I would suggest monitoring δ¹⁵N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the PNSAV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO2) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO2 on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO2 treatments [Current-day Control (430 µatm), Moderate (584 µatm) and High (1032 µatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO2 dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO2 treatment. Pairs in the High CO2 group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO2 group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO2. However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of elevated pCO2 on the metabolism of a coral reef community dominated by macroalgae has been investigated utilizing the large 2650 m3 coral reef mesocosm at the Biosphere-2 facility near Tucson, Arizona. The carbonate chemistry of the water was manipulated to simulate present-day and a doubled CO2 future condition. Each experiment consisted of a 1-2 month preconditioning period followed by a 7-9 day observational period. The pCO2 was 404 ± 63 ?atm during the present-day pCO2 experiment and 658 ± 59 ?atm during the elevated pCO2 experiment. Nutrient levels were low and typical of natural reefs waters (NO3? 0.5-0.9 ?M, NH4+ 0.4 ?M, PO43? 0.07-0.09 ?M). The temperature and salinity of the water were held constant at 26.5 ± 0.2°C and 34.4 ± 0.2 ppt. Photosynthetically available irradiance was 10 ± 2 during the present-day experiment and 7.4 ± 0.5 mol photons m?2 d?1 during the elevated pCO2 experiment. The primary producer biomass in the mesocosm was dominated by four species of macroalgae; Haptilon cubense, Amphiroa fragillisima, Gelidiopsis intricata and Chondria dasyphylla. Algal biomass was 10.4 mol C m?2 during the present-day and 8.7 mol C m?2 and during the elevated pCO2 experiments. As previously observed, the increase in pCO2 resulted in a decrease in calcification from 0.041 ± 0.007 to 0.006 ± 0.003 mol CaCO3 m?2 d?1. Net community production (NCP) and dark respiration did not change in response to elevated pCO2. Light respiration measured by a new radiocarbon isotope dilution method exceeded dark respiration by a factor of 1.2 ± 0.3 to 2.1 ± 0.4 on a daily basis and by 2.2 ± 0.6 to 3.9 ± 0.8 on an hourly basis. The 1.8-fold increase with increasing pCO2 indicates that the enhanced respiration in the light was not due to photorespiration. Gross production (GPP) computed as the sum of NCP plus daily respiration (light + dark) increased significantly (0.24 ± 0.03 vs. 0.32 ± 0.04 mol C m?2 d?1). However, the conventional calculation of GPP based on the assumption that respiration in the light proceeds at the same rate as the dark underestimated the true rate of GPP by 41-100% and completely missed the increased rate of carbon cycling due to elevated pCO2. We conclude that under natural, undisturbed, nutrient-limited conditions elevated CO2 depresses calcification, stimulates the rate of turnover of organic carbon, particularly in the light, but has no effect on net organic production. The hypothesis that an increase pCO2 would produce an increase in net production that would counterbalance the effect of decreasing saturation state on calcification is not supported by these data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self controlling practice implies a process of decision making which suggests that the options in a self controlled practice condition could affect learners The number of task components with no fixed position in a movement sequence may affect the (Nay learners self control their practice A 200 cm coincident timing track with 90 light emitting diodes (LEDs)-the first and the last LEDs being the warning and the target lights respectively was set so that the apparent speed of the light along the track was 1 33 m/sec Participants were required to touch six sensors sequentially the last one coincidently with the lighting of the tar get light (timing task) Group 1 (n=55) had only one constraint and were instructed to touch the sensors in any order except for the last sensor which had to be the one positioned close to the target light Group 2 (n=53) had three constraints the first two and the last sensor to be touched Both groups practiced the task until timing error was less than 30 msec on three consecutive trials There were no statistically significant differences between groups in the number of trials needed to reach the performance criterion but (a) participants in Group 2 created fewer sequences corn pared to Group 1 and (b) were more likely to use the same sequence throughout the learning process The number of options for a movement sequence affected the way learners self-controlled their practice but had no effect on the amount of practice to reach criterion performance.