869 resultados para Redox dysfunction
Resumo:
As espécies reativas de oxigénio (ROS) estão envolvidas no desenvolvimento de dor neuropática. No entanto, a aplicação clínica de moléculas antioxidantes no tratamento desta patologia tem demonstrado pouca eficácia. A inibição da NADPH oxidase (NOX), uma das principais fontes de ROS, poderá ser uma boa estratégia terapêutica. O nosso grupo verificou que a apocinina (inibidor da NOX) melhora parcialmente os sintomas de dor neuropática e a disfunção redox espinhal no modelo SNI (spared nerve injury). De forma a melhorar este efeito terapêutico, o presente estudo insere-se num projeto maior, que visa identificar as isoformas da NOX envolvidas na fisiopatologia da doença e avaliar o efeito da administração de inibidores específicos para essas isoformas. Assim, propusemo-nos a avaliar a disfunção redox espinhal em fases precoces dador neuropática periférica induzida pelo modelo SNI no Rato, relacionando-a com os comportamentos de dor demonstrados pelos animais. Foram constituídos três grupos experimentais: SNI, sham e naïve, com subgrupos testados e sacrificados aos dias 1, 3, 7 e 14 após a cirurgia. Avaliou-se a sensibilidade mecânica (vonFrey e pinprick) e ao frio (acetona) dos animais, sacrificaram-se e recolheram-se as medulas espinhais para análise imunohistoquímica, com marcadores de dano oxidativo no DNA e de dano nitrosativo. Ao contrário dos animais sham, que demonstraram um comportamento muito próximo dos naïve, os animais SNI desenvolveram alodínia mecânica e ao frio e hiperalgesia mecânica na pata ipsilateral. No entanto, o dano oxidativo no corno dorsal ipsilateral da medula espinhal apresentou-se idêntico nos grupos SNI e sham ao longo dos 14 dias de estudo, não havendo também diferenças entre os cornos ipsi e contralateral à lesão nervosa. É possível que o desenvolvimento de dor neuropática nos animais SNI não se faça acompanhar de disfunção redox espinhal, pelo menos até aos 14 dias pós indução. O facto de a lesão nervosa no modelo SNI se localizar numa porção distal do ciático, ao contrário de outros modelos em que o stresse oxidativo espinhal foi já descrito, poderia explicar essas diferenças. Em todo o caso, considerando que os resultados comportamentais obtidos indicam que as cirurgias SNI e sham causam diferentes níveis de sensibilização nos animais, parece-nos fulcral prolongar os tempos de neuropatia, e executar uma avaliação do estado redox com outros marcadores, de forma a elucidar se, de facto, existem ROS envolvidas nesta sensibilização e, em caso positivo, poder identificar essas espécies, bem como as suas fontes.
Resumo:
Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.
Resumo:
Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease.
Resumo:
Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.
Resumo:
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.
Resumo:
Introduction. Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia. Methods. We studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells. Results. We found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy. Conclusions. These findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.
Resumo:
Amantadine is an antiviral and antiparkinsonian drug that has been evaluated in combination therapies against hepatitis C virus (HCV) infection. Controversial results have been reported concerning its efficacy, and its mechanism of action remains unclear. Data obtained in vitro suggested a role of amantadine in inhibiting HCV p7-mediated cation conductance. In keeping with the fact that mitochondria are responsible to ionic fluxes and that HCV infection impairs mitochondrial function, we investigated a potential role of amantadine in modulating mitochondrial function. Using a well-characterized inducible cell line expressing the full-length HCV polyprotein, we found that amantadine not only prevented but also rescued HCV protein-mediated mitochondrial dysfunction. Specifically, amantadine corrected (i) overload of mitochondrial Ca(2+); (ii) inhibition of respiratory chain activity and oxidative phosphorylation; (iii) reduction of membrane potential; and (iv) overproduction of reactive oxygen species. The effects of amantadine were observed within 15 min following drug administration and confirmed in Huh-7.5 cells transfected with an infectious HCV genome. These effects were also observed in cells expressing subgenomic HCV constructs, indicating that they are not mediated or only in part mediated by p7. Single organelle analyzes carried out on isolated mouse liver mitochondria demonstrated that amantadine induces hyperpolarization of the membrane potential. Moreover, amantadine treatment increased the calcium threshold required to trigger mitochondrial permeability transition opening. In conclusion, these results support a role of amantadine in preserving cellular bioenergetics and redox homeostasis in HCV-infected cells and unveil an effect of the drug which might be exploited for a broader therapeutic utilization.
Resumo:
Peroxynitrite is a potent oxidant and nitrating species formed from the reaction between the free radicals nitric oxide and superoxide. An excessive formation of peroxynitrite represents an important mechanism contributing to cell death and dysfunction in multiple cardiovascular pathologies, such as myocardial infarction, heart failure and atherosclerosis. Whereas initial works focused on direct oxidative biomolecular damage as the main route of peroxynitrite toxicity, more recent evidence, mainly obtained in vitro, indicates that peroxynitrite also behaves as a potent modulator of various cell signal transduction pathways. Due to its ability to nitrate tyrosine residues, peroxynitrite affects cellular processes dependent on tyrosine phosphorylation. Peroxynitrite also exerts complex effects on the activity of various kinases and phosphatases, resulting in the up- or downregulation of signalling cascades, in a concentration- and cell-dependent manner. Such roles of peroxynitrite in the redox regulation of key signalling pathways for cardiovascular homeostasis, including protein kinase B and C, the MAP kinases, Nuclear Factor Kappa B, as well as signalling dependent on insulin and the sympatho-adrenergic system are presented in detail in this review.
Resumo:
In this study, we investigated the oxidative stress influence in some prosurvival and proapoptotic proteins after myocardial infarction (MI). Male Wistar rats were divided in two groups: Sham-operated (control) and MI. MI was induced by left coronary artery occlusion. 28-days after surgery, echocardiographic, morphometric, and hemodynamic parameters were evaluated. Redox status (reduced to oxidized glutathione ratio, GSH/GSSG) and hydrogen peroxide levels (H(2)O(2)) were measured in heart tissue. The p-ERK/ERK, p-Akt/Akt, p-mTOR/mTOR and p-GSK-3 beta/GSK-3 beta ratios, as well as apoptosis-inducing factor (AIF) myocardial protein expression were quantified by Western blot. MI group showed an increase in cardiac hypertrophy (23%) associated with a decrease in ejection fraction (38%) and increase in left ventricular end-diastolic pressure (82%) when compared to control, characterizing ventricular dysfunction. Redox status imbalance was seen in MI animals, as evidenced by the decrease in the GSH/GSSG ratio (30%) and increased levels of H(2)O(2) (45%). This group also showed an increase in the ERK phosphorylation and a reduction of Akt and mTOR phosphorylation when compared to control. Moreover, we showed a reduction in the GSK-3 beta phosphorylation and an increase in AIF protein expression in MI group. Taken together, our results show increased H(2)O(2) levels and cellular redox imbalance associated to a higher p-ERK and AIF immunocontent, which would contribute to a maladaptive hypertrophy phenotype.
Resumo:
Abstract Introduction Several studies link hematological dysfunction to severity of sepsis. Previously we showed that platelet-derived microparticles from septic patients induce vascular cell apoptosis through the NADPH oxidase-dependent release of superoxide. We sought to further characterize the microparticle-dependent vascular injury pathway. Methods During septic shock there is increased generation of thrombin, TNF-α and nitric oxide (NO). Human platelets were exposed for 1 hour to the NO donor diethylamine-NONOate (0.5 μM), lipopolysaccharide (LPS; 100 ng/ml), TNF-α (40 ng/ml), or thrombin (5 IU/ml). Microparticles were recovered through filtration and ultracentrifugation and analyzed by electron microscopy, flow cytometry or Western blotting for protein identification. Redox activity was characterized by lucigenin (5 μM) or coelenterazine (5 μM) luminescence and by 4,5-diaminofluorescein (10 mM) and 2',7'-dichlorofluorescein (10 mM) fluorescence. Endothelial cell apoptosis was detected by phosphatidylserine exposure and by measurement of caspase-3 activity with an enzyme-linked immunoassay. Results Size, morphology, high exposure of the tetraspanins CD9, CD63, and CD81, together with low phosphatidylserine, showed that platelets exposed to NONOate and LPS, but not to TNF-α or thrombin, generate microparticles similar to those recovered from septic patients, and characterize them as exosomes. Luminescence and fluorescence studies, and the use of specific inhibitors, revealed concomitant superoxide and NO generation. Western blots showed the presence of NO synthase II (but not isoforms I or III) and of the NADPH oxidase subunits p22phox, protein disulfide isomerase and Nox. Endothelial cells exposed to the exosomes underwent apoptosis and caspase-3 activation, which were inhibited by NO synthase inhibitors or by a superoxide dismutase mimetic and totally blocked by urate (1 mM), suggesting a role for the peroxynitrite radical. None of these redox properties and proapoptotic effects was evident in microparticles recovered from platelets exposed to thrombin or TNF-α. Conclusion We showed that, in sepsis, NO and bacterial elements are responsible for type-specific platelet-derived exosome generation. Those exosomes have an active role in vascular signaling as redox-active particles that can induce endothelial cell caspase-3 activation and apoptosis by generating superoxide, NO and peroxynitrite. Thus, exosomes must be considered for further developments in understanding and treating vascular dysfunction in sepsis.
Resumo:
Abstract Introduction Mechanisms underlying inotropic failure in septic shock are incompletely understood. We previously identified the presence of exosomes in the plasma of septic shock patients. These exosomes are released mainly by platelets, produce superoxide, and induce apoptosis in vascular cells by a redox-dependent pathway. We hypothesized that circulating platelet-derived exosomes could contribute to inotropic dysfunction of sepsis. Methods We collected blood samples from 55 patients with septic shock and 12 healthy volunteers for exosome separation. Exosomes from septic patients and healthy individuals were investigated concerning their myocardial depressant effect in isolated heart and papillary muscle preparations. Results Exosomes from the plasma of septic patients significantly decreased positive and negative derivatives of left ventricular pressure in isolated rabbit hearts or developed tension and its first positive derivative in papillary muscles. Exosomes from healthy individuals decreased these variables non-significantly. In hearts from rabbits previously exposed to endotoxin, septic exosomes decreased positive and negative derivatives of ventricular pressure. This negative inotropic effect was fully reversible upon withdrawal of exosomes. Nitric oxide (NO) production from exosomes derived from septic shock patients was demonstrated by fluorescence. Also, there was an increase in myocardial nitrate content after exposure to septic exosomes. Conclusion Circulating platelet-derived exosomes from septic patients induced myocardial dysfunction in isolated heart and papillary muscle preparations, a phenomenon enhanced by previous in vivo exposure to lipopolysaccharide. The generation of NO by septic exosomes and the increased myocardial nitrate content after incubation with exosomes from septic patients suggest an NO-dependent mechanism that may contribute to myocardial dysfunction of sepsis.
Resumo:
Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases
Resumo:
Increased glycolysis and oxidative stress are common features of cancer cells. These metabolic alterations are associated with mitochondrial dysfunction and can be caused by mitochondrial DNA (mtDNA) mutations, oncogenic signals, loss of tumor suppressor, and tumor tissue hypoxia. It is well established that mitochondria play central roles in energy metabolism, maintenance of redox balance, and regulation of apoptosis. However, the biochemical and molecular mechanisms that maintain high glycolysis in cancer cells (the Warburg effect) with mitochondrial dysfunction and oxidative stress remain to be determined. The major goals of this study were to establish a unique experimental system in which the mitochondrial respiratory function can be regulated as desired, and to use this system to investigate the mechanistic link between mitochondrial dysfunction and the Warburg effect along with oxidative stress in cancer cells. To achieve these goals, I have established a tetracycline-inducible system in which a dominant negative form of mitochondrial DNA polymerase y (POLGdn) expression could be regulated by tetracycline; thus controlling mitochondrial respiratory function. Using this cell system, I demonstrated that POLGdn expression resulted in mitochondrial dysfunction through decreasing mtDNA content, depletion of mtDNA encoded mRNA and protein expression. This process was mediated by TFAM proteasome degradation. Mitochondrial dysfunction mediated by POLGdn expression led to a significant increase in cellular glycolysis and oxidative stress. Surprisingly, mitochondrial dysfunction also resulted in increased NAD(P)H oxidase (NOX) enzyme activity, which was shown to be essential for maintaining high glycolysis. Chemical Inhibition of NOX activity by diphenyliodonium (DPI) preferentially impacted the survival of mitochondrial defective cells. The colon cancer HCT116-/- cells that have lost transcriptional regulation of the mitochondrial assembling enzyme SCO2, leading to compromised mitochondrial respiratory function, were found to have increased NOX activity and were highly sensitive to DPI treatment. Ovarian epithelial cells with Ras transformation also exhibited an increase in NOX gene expression and NOX enzyme activity, rendering the cells sensitive to DPI inhibition especially under hypoxic condition. These data together suggest that NOX plays a novel role in maintaining high glycolysis in cancer cells with mitochondrial defects, and that NOX may be a potential target for cancer therapy. ^
Resumo:
Increasing attention has been given to the connection between metabolism and cancer. Under aerobic conditions, normal cells predominantly use oxidative phosphorylation for ATP generation. In contrast, increase of glycolytic activity has been observed in various tumor cells, which is known as Warburg effect. Cancer cells, compared to normal cells, produce high levels of Reactive Oxygen Species (ROS) and hence are constantly under oxidative stress. Increase of oxidative stress and glycolytic activity in cancer cells represent major biochemical alterations associated with malignant transformation. Despite prevalent upregulation of ROS production and glycolytic activity observed in various cancer cells, underlying mechanisms still remain to be defined. Oncogenic signals including Ras has been linked to regulation of energy metabolism and ROS production. Current study was initiated to investigate the mechanism by which Ras oncogenic signal regulates cellular metabolism and redox status. A doxycycline inducible gene expression system with oncogenic K-ras transfection was constructed to assess the role played by Ras activation in any given studied parameters. Data obtained here reveals that K-ras activation directly caused mitochondrial dysfunction and ROS generation, which appeared to be mechanistically associated with translocation of K-ras to mitochondria and the opening of the mitochondrial permeability transition pore. K-ras induced mitochondrial dysfunction led to upregulation of glycolysis and constitutive activation of ROS-generating NAD(P)H Oxidase (NOX). Increased oxidative stress, upregulation of glycolytic activity, and constitutive activated NOX were also observed in the pancreatic K-ras transformed cancer cells compared to their normal counterparts. Compared to non-transformed cells, the pancreatic K-ras transformed cancer cells with activated NOX exhibited higher sensitivity to capsaicin, a natural compound that appeared to target NOX and cause preferential accumulation of oxidative stress in K-ras transformed cells. Taken together, these findings shed new light on the role played by Ras in the road to cancer in the context of oxidative stress and metabolic alteration. The mechanistic relationship between K-ras oncogenic signals and metabolic alteration in cancer will help to identify potential molecular targets such as NAD(P)H Oxidase and glycolytic pathway for therapeutic intervention of cancer development. ^
Resumo:
The aim of this study was to determine the effects of dietary antioxidant supplementation with a-tocopherol and a-lipoic acid on cyclosporine-induced alterations to erythrocyte and plasma redox balance, and cyclosporine-induced endothelial and smooth muscle dysfunction. Rats were randomly assigned to either control, antioxidant, cyclosporine or cyclosporine + antioxidant treatments. Cyclosporine A was administered for 10 days after an 8-week feeding period. Plasma was analyzed for alpha-tocopherol, total antioxidant capacity, malondialdehyde and creatinine. Erythrocytes were analyzed for glutathione, methemoglobin, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, alpha-tocopherol and malondialdehye. Vascular endothelial and smooth muscle function was determined in vitro. Antioxidant supplementation resulted in significant increases in erythrocyte a-tocopherol concentration and glutathione peroxidase activity in both of the antioxidant-supplemented groups. Cyclosporine administration caused significant decreases in glutathione concentration, methemoglobin concentration and superoxide dismutase activity. Antioxidant supplementation attenuated the cyclosporine-induced decrease in superoxide dismutase activity. Cyclosporine therapy impaired both endothelium-independent and -dependent relaxation of the thoracic aorta, and this was attenuated by antioxidant supplementation. In summary, dietary supplementation with alpha-tocopherol and alpha-lipoic acid attenuated the cyclosporine-induced decrease in erythrocyte superoxide dismutase activity and attenuated cyclosporine-induced vascular dysfunction.