944 resultados para Redes neuronais B-spline
Resumo:
Dissertação de mest. em Engenharia de Sistemas e Computação - Área de Sistemas de Controlo, Faculdade de Ciências e Tecnologia, Univ.do Algarve, 2001
Resumo:
The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
Resumo:
The design phase of B-spline neural networks represents a very high computational task. For this purpose, heuristics have been developed, but have been shown to be dependent on the initial conditions employed. In this paper a new technique, Bacterial Programming, is proposed, whose principles are based on the replication of the microbial evolution phenomenon. The performance of this approach is illustrated and compared with existing alternatives.
Resumo:
Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
The design of neuro-fuzzy models is still a complex problem, as it involves not only the determination of the model parameters, but also its structure. Of special importance is the incorporation of a priori information in the design process. In this paper two known design algorithms for B-spline models will be updated to account for function and derivatives equality restrictions, which are important when the neural model is used for performing single or multi-objective optimization on-line.
Resumo:
Trabalho Final de mestrado para obtenção do grau de Mestre em engenharia Mecância
B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy
Resumo:
An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy). A comparative study of the proposed technique with the state-of-art maximum likelihood (ML) and maximum-a-posteriori (MAP) with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED. (C) 2015 Author(s).
Resumo:
An immersed finite element method is presented to compute flows with complex moving boundaries on a fixed Cartesian grid. The viscous, incompressible fluid flow equations are discretized with b-spline basis functions. The two-scale relation for b-splines is used to implement an elegant and efficient technique to satisfy the LBB condition. On non-grid-aligned fluid domains and at moving boundaries, the boundary conditions are enforced with a consistent penalty method as originally proposed by Nitsche. In addition, a special extrapolation technique is employed to prevent the loss of numerical stability in presence of arbitrarily small cut-cells. The versatility and accuracy of the proposed approach is demonstrated by means of convergence studies and comparisons with previous experimental and computational investigations.
Resumo:
A novel technique is presented to facilitate the implementation of hierarchical b-splines and their interfacing with conventional finite element implementations. The discrete interpretation of the two-scale relation, as common in subdivision schemes, is used to establish algebraic relations between the basis functions and their coefficients on different levels of the hierarchical b-spline basis. The subdivision projection technique introduced allows us first to compute all element matrices and vectors using a fixed number of same-level basis functions. Their subsequent multiplication with subdivision matrices projects them, during the assembly stage, to the correct levels of the hierarchical b-spline basis. The proposed technique is applied to convergence studies of linear and geometrically nonlinear problems in one, two and three space dimensions. © 2012 Elsevier B.V.
Resumo:
We present a fixed-grid finite element technique for fluid-structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b-spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision-stabilisation technique is used to ensure inf-sup stability. The beam equations are discretised with b-splines and the shell equations with subdivision basis functions, both leading to a rotation-free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet-Robin partitioning scheme, and the fluid equations are solved with a pressure-correction method. Auxiliary techniques employed for improving numerical robustness include the level-set based implicit representation of the structure interface on the fluid grid, a cut-cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. © 2013 John Wiley & Sons, Ltd.