881 resultados para Redes neurais ARTMAP nebulosas
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Este trabalho relata o desenvolvimento de uma aplicação capaz de reconhecer um vocabulário restrito de comandos de direcionamento pronunciados de forma isolada e independentes do locutor. Os métodos utilizados para efetivar o reconhecimento foram: técnicas clássicas de processamento de sinais e redes neurais artificiais. No processamento de sinais visou-se o pré-processamento das amostras para obtenção dos coeficientes cepstrais. Enquanto que para o treinamento e classificação foram utilizadas duas redes neurais distintas, as redes: Backpropagation e Fuzzy ARTMAP. Diversas amostras foram coletadas de diferentes usuários no sentido de compor um banco de dados flexível para o aprendizado das redes neurais, que garantisse uma representação satisfatória da grande variabilidade que apresentam as pronúncias entre as vozes dos usuários. Com a aplicação de tais técnicas, o reconhecimento demostrou-se eficaz, distinguindo cada um dos comandos com bons índices de acerto, uma vez que o sistema é independente do locutor.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
O objetivo deste trabalho é conhecer e compreender melhor os imprevistos no fornecimento de energia elétrica, quando ocorrem as variações de tensão de curta duração (VTCD). O banco de dados necessário para os diagnósticos das faltas foi obtido através de simulações de um modelo de alimentador radial através do software PSCAD/EMTDC. Este trabalho utiliza um Phase-Locked Loop (PLL) com o intuito de detectar VTCDs e realizar a estimativa automática da frequência, do ângulo de fase e da amplitude das tensões e correntes da rede elétrica. Nesta pesquisa, desenvolveram-se duas redes neurais artificiais: uma para identificar e outra para localizar as VTCDs ocorridas no sistema de distribuição de energia elétrica. A técnica aqui proposta aplica-se a alimentadores trifásicos com cargas desequilibradas, que podem possuir ramais laterais trifásicos, bifásicos e monofásicos. No desenvolvimento da mesma, considera-se que há disponibilidade de medições de tensões e correntes no nó inicial do alimentador e também em alguns pontos esparsos ao longo do alimentador de distribuição. Os desempenhos das arquiteturas das redes neurais foram satisfatórios e demonstram a viabilidade das RNAs na obtenção das generalizações que habilitam o sistema para realizar a classificação de curtos-circuitos.
Resumo:
As sintonias dos Controladores PID existentes em um Sistema de Posicionamento Dinâmico, utilizado em embarcações e plataformas a fim de manter uma posição fixa em alto-mar ou de realizar determinada manobra, sempre tem sido um desafio a ser vencido. Trata-se de uma tarefa demorada, dependente das condições ambientais e com um elevado custo financeiro, uma vez que as horas dedicadas do profissional habilitado são caras. Além disso, a embarcação deve-se manter estabilizada durante o período de tempo no qual determinada função é realizada, como por exemplo, perfuração, abastecimento, ou lançamento de dutos. Foi utilizado um software para simular o posicionamento de uma embarcação em alto-mar sob diversas condições de vento e correnteza, com o qual foi possível verificar a influência da sintonia dos parâmetros PID do Controlador no desempenho do sistema de controle. O Sistema dinâmico abordado possui um comportamento não linear e sujeito a fortes distúrbios não medidos, o que são apenas alguns exemplos de questões avaliadas deste trabalho. Neste contexto, foram projetadas Redes Neurais com o intuito de aprimorar a técnica utilizada para determinar os ganhos de um dos Controladores PID de um Sistema de Posicionamento Dinâmico. Os melhores resultados foram obtidos através da avaliação de desempenho de diversas simulações de Redes Neurais que revelam a viabilidade da implementação da sintonia automática de Controladores em Sistemas de Posicionamento Dinâmico.
Resumo:
Neste trabalho é apresentado um estudo para a determinação do tamanho ótimo da malha de elementos, utilizando redes neurais artificiais, para o cálculo da intensidade útil. A ideia principal é treinar as redes de modo a possibilitar a aprendizagem e o reconhecimento do melhor tamanho para diversas áreas superficiais em fontes sonoras com geometria plana. A vantagem de se utilizar redes neurais artificiais deve-se ao fato de apresentarem um único tamanho para a obtenção da intensidade útil, consequentemente, uma redução significativa de tempo computacional quando comparado com o tempo de cálculo de uma malha bem refinada. Ensaios numéricos com placas planas - geometria separável que permite uma solução analítica - são utilizados para se realizar comparações. É apresentado um estudo comparativo entre o tempo computacional gasto para a obtenção da intensidade útil e o mesmo com a malha otimizada via redes neurais artificiais. Também é apresentada uma comparação do nível de potência sonora mediante solução numérica, a fim de validar os resultados apresentados pelas redes neurais.
Resumo:
A identificação e o monitoramento de microorganismos aquáticos, como bactérias e microalgas, tem sido uma tarefa árdua e morosa. Técnicas convencionais, com uso de microscópios e corantes, são complexas, exigindo um grande esforço por parte dos técnicos e pesquisadores. Uma das maiores dificuldades nos processos convencionais de identificação via microscopia é o elevado número de diferentes espécies e variantes existentes nos ambientes aquáticos, muitas com semelhança de forma e textura. O presente trabalho tem por objetivo o desenvolvimento de uma metodologia para a caracterização e classificação de microorganismos aquáticos (bactérias e microalgas), bem como a determinação de características cinemáticas, através do estudo da mobilidade de microalgas que possuem estruturas que permitem a natação (flagelos). Para caracterização e reconhecimento de padrões as metodologias empregadas foram: o processamento digital de imagens e redes neurais artificiais (RNA). Para a determinação da mobilidade dos microorganismos foram empregadas técnicas de velocimetria por processamento de imagens de partículas em movimento (Particle Tracking Velocimetry - PTV). O trabalho está dividido em duas partes: 1) caracterização e contagem de microalgas e bactérias aquáticas em amostras e 2) medição da velocidade de movimentação das microalgas em lâminas de microscópio. A primeira parte envolve a aquisição e processamento digital de imagens de microalgas, a partir de um microscópio ótico, sua caracterização e determinação da densidade de cada espécie contida em amostras. Por meio de um microscópio epifluorescente, foi possível, ainda, acompanhar o crescimento de bactérias aquáticas e efetuar a sua medição por operadores morfológicos. A segunda parte constitui-se na medição da velocidade de movimentação de microalgas, cujo parâmetro pode ser utilizado como um indicador para se avaliar o efeito de substâncias tóxicas ou fatores de estresse sobre as microalgas. O trabalho em desenvolvimento contribuirá para o projeto "Produção do Camarão Marinho Penaeus Paulensis no Sul do Brasil: Cultivo em estruturas Alternativas" em andamento na Estação Marinha de Aquacultura - EMA e para pesquisas no Laboratório de Ecologia do Fitoplâncton e de Microorganismos Marinhos do Departamento de Oceanografia da FURG. O trabalho propõe a utilização dos níveis de intensidade da imagem em padrão RGB e oito grandezas geométricas como características para reconhecimento de padrões das microalgas O conjunto proposto de características das microalgas, do ponto de vista de grandezas geométricas e da cor (nível de intensidade da imagem e transformadas Fourier e Radon), levou à geração de indicadores que permitiram o reconhecimento de padrões. As redes neurais artificiais desenvolvidas com topologia de rede multinível totalmente conectada, supervisionada, e com algoritmo de retropropagação, atingiram as metas de erro máximo estipuladas entre os neurônios de saída desejados e os obtidos, permitindo a caracterização das microalgas.