956 resultados para Rede Neuronal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objectivo deste trabalho é a implementação em hardware de uma Rede Neuronal com um microprocessador embebido, podendo ser um recurso valioso em várias áreas científicas. A importância das implementações em hardware deve-se à flexibilidade, maior desempenho e baixo consumo de energia. Para esta implementação foi utilizado o dispositivo FPGA Virtex II Pro XC2VP30 com um MicroBlaze soft core, da Xilinx. O MicroBlaze tem vantagens como a simplicidade no design, sua reutilização e fácil integração com outras tecnologias. A primeira fase do trabalho consistiu num estudo sobre o FPGA, um sistema reconfigurável que possui características importantes como a capacidade de executar em paralelo tarefas complexas. Em seguida, desenvolveu-se o código de implementação de uma Rede Neuronal Artificial baseado numa linguagem de programação de alto nível. Na implementação da Rede Neuronal aplicou-se, na camada escondida, a função de activação tangente hiperbólica, que serve para fornecer a não linearidade à Rede Neuronal. A implementação é feita usando um tipo de Rede Neuronal que permite apenas ligações no sentido de saída, chamado Redes Neuronais sem realimentação (do Inglês Feedforward Neural Networks - FNN). Como as Redes Neuronais Artificiais são sistemas de processamento de informações, e as suas características são comuns às Redes Neuronais Biológicas, aplicaram-se testes na implementação em hardware e analisou-se a sua importância, a sua eficiência e o seu desempenho. E finalmente, diante dos resultados, fez-se uma análise de abordagem e metodologia adoptada e sua viabilidade.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Esta dissertação apresenta um estudo sobre a garantia de fornecimento de energia elétrica por parte dos produtores em regime especial com tecnologia cogeração e o impacto que estes traduzem na fase de planeamento da rede. Este trabalho foi realizado na Energias de Portugal - Distribuição (EDP-D) na direção de planeamento da rede (DPL). Para este estudo foi utilizado o caso de uma subestação com dezoito produtores em regime especial agregados à sua rede, em que dezasseis desses produtores são cogeração. A proposta de estudo para o caso concreto, passa pela análise das condições de funcionamento da subestação e apurar se a mesma necessita de alguma reformulação, tendo em vista as cargas a satisfazer atuais e possível incremento de carga futura. Considerando que a subestação está inserida num ambiente industrial e atendendo que existem diversos produtores de energia elétrica nas imediações da subestação. Para a resolução da garantia do fornecimento de energia por parte da cogeração, estudou-se a possibilidade de prever a energia produzida por estes produtores, através dos seguintes modelos de previsão: árvore de regressão, árvore de regressão com aplicação bagging e uma rede neuronal (unidirecional). Com a implementação destes modelos pretende-se estimar qual a potência que se pode esperar na garantia de abastecimento da carga, prevenindo maior solicitação de potência por parte da subestação. A metodologia utilizada baseia-se em simulações computacionais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Um dos maiores desafios tecnológicos no presente é o de se conseguir gerar e manter, de uma maneira eficiente e consistente, uma base de dados de objectos multimédia, em particular, de imagens. A necessidade de desenvolver métodos de pesquisa automáticos baseados no conteúdo semântico das imagens tornou-se de máxima importância. MPEG-7 é um standard que descreve o contudo dos dados multimédia que suportam estes requisitos operacionais. Adiciona um conjunto de descritores audiovisuais de baixo nível. O histograma é a característica mais utilizada para representar as características globais de uma imagem. Neste trabalho é usado o “Edge Histogram Descriptor” (EHD), que resulta numa representação de baixo nível que permite a computação da similaridade entre imagens. Neste trabalho, é obtida uma caracterização semântica da imagem baseada neste descritor usando dois métodos da classificação: o algoritmo k Nearest Neighbors (k-NN) e uma Rede Neuronal (RN) de retro propagação. No algoritmo k-NN é usada a distância Euclidiana entre os descritores de duas imagens para calcular a similaridade entre imagens diferentes. A RN requer um processo de aprendizagem prévia, que inclui responder correctamente às amostras do treino e às amostras de teste. No fim deste trabalho, será apresentado um estudo sobre os resultados dos dois métodos da classificação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uma rede neuronal artificial consiste no processamento de elementos (análogos aos neurónios do sistema neuronal biológico) inter conectados em rede. As redes neuronais artificiais possuem duas grandes forças: por um lado, são instrumentos poderosos na modelização e compreensão do comportamento cognitivo humano; por outro, têm fortes propriedades de reconhecimento de padrões, sendo capazes de reconhecer padrões mesmo entre dados variáveis, ambíguos e confusos (Refenes, 1995, citado por Koskivaara, 2000). Por esta razão, a aplicação desta nova tecnologia à auditoria tem vindo a acentuar-se. O objectivo deste trabalho consiste em apresentar os fundamentos das redes neuronais artificiais, bem como as principais áreas de aplicação à auditoria. Entre estas descata-se a detecção de erros materialmente relevantes. Os auditores estabelecem a natureza, extensão, profundidade e oportunidade dos procedimentos de auditoria com base na investigação resultante de flutuações e relações que sejam inconsistentes com outra informação relevante ou que se desviem de quantias previstas. Ora, os modelos de rede neuronais permitem captar padrões relevantes detectados na informação financeira, estabelecendo correlações entre os dados dificilmente percepcionadas pelos meios tradicionalmente utilizados pelos auditores. Outras áreas da auditoria em que as redes neuronais se têm mostrado instrumentos válidos de auxílio ao julgamento dos auditores são a avaliação do risco de gestão fraudulenta, a avaliação do princípio da continuidade e a avaliação do controlo interno da entidade auditada.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Área de especialização: Imagem Digital por Radiação X.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O uso da energia eólica para a produção de eletricidade apresenta na última década um crescimento apreciável. Monitorizar o desempenho dos aerogeradores torna-se um processo incontornável, quer por motivos financeiros, quer por questões operacionais. Os investimentos despendidos na construção de parques eólicos são muito consideráveis, pelo que é essencial a análise constante dos aspetos preponderantes no retorno do investimento. A maximização da energia produzida por cada aerogerador é o objetivo principal da monitorização dos parques eólicos. Os sistemas Supervisory Control and Data Acquisition (SCADAs) instalados nos parques eólicos permitem uma supervisão em tempo real relativamente ao estado e funcionamento dos aerogeradores, adquirindo uma elevada importância na avaliação dos rendimentos energéticos e anomalias de funcionamento, garantido desta forma melhorias de produtividade. O objetivo deste trabalho é estimar a energia produzida pelos aerogeradores quando ocorrem falhas de comunicação com o seu contador interno ou avaria do mesmo. A ocorrência destas situações não permite a monitorização da energia produzida durante esse período. Foram analisados dados operacionais dos aerogeradores relativos a um parque eólico localizado na zona Norte de Portugal, sendo usados os dados recolhidos pelo sistema SCADA sobre a forma de médias de 10 min referentes ao período de janeiro de 2011 a agosto 2011. O desempenho da rede neuronal depende da qualidade e quantidade do conjunto de dados usados para o treino da rede. Os dados usados devem representar de forma fiel o estado que se pretende para o equipamento. Para a obtenção do objetivo proposto foi fundamental a identificação das grandezas disponíveis a utilizar no método de cálculo da energia produzida. Os resultados obtidos com aplicação das redes neuronais no método de cálculo da energia produzida por aerogeradores demonstram que independentemente do período de indisponibilidade da informação referente à energia produzida é possível estimar o valor da mesma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho pretende-se introduzir os conceitos associados às redes neuronais e a sua aplicação no controlo de sistemas, neste caso na área da robótica autónoma. Foi utilizado um AGV de modo a testar experimentalmente um controlo através de uma rede neuronal artificial. A grande vantagem das redes neuronais artificiais é estas poderem ser ensinadas a funcionarem como se pretende. A partir desta caraterística foram efetuadas duas abordagens na implementação do AGV disponibilizado. A primeira abordagem ensinava a rede neuronal a funcionar como o controlo por lógica difusa que foi implementado no AGV aquando do seu desenvolvimento. A segunda abordagem foi ensinar a rede neuronal artificial a funcionar a partir de dados retirados de um controlo remoto simples implementado no AGV. Ambas as abordagens foram inicialmente implementadas e simuladas no MATLAB, antes de se efetuar a sua implementação no AGV. O MATLAB é utilizado para efetuar o treino das redes neuronais multicamada proactivas através do algoritmo de treino por retropropagação de Levenberg-Marquardt. A implementação de uma rede neuronal artificial na primeira abordagem foi implementada em três fases, MATLAB, posteriormente linguagem de programação C no computador e por fim, microcontrolador PIC no AGV, permitindo assim diferenciar o desenvolvimento destas técnicas em várias plataformas. Durante o desenvolvimento da segunda abordagem foi desenvolvido uma aplicação Android que permite monitorizar e controlar o AGV remotamente. Os resultados obtidos pela implementação da rede neuronal a partir do controlo difuso e do controlo remoto foram satisfatórios, pois o AGV percorria os percursos testados corretamente, em ambos os casos. Por fim concluiu-se que é viável a aplicação das redes neuronais no controlo de um AGV. Mais ainda, é possível utilizar o sistema desenvolvido para implementar e testar novas RNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de mestrado para obtenção do grau de Mestre em engenharia Mecância

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presente dissertação tem como propósito a definição das características de um modelo prognóstico,utilizando uma rede neuronal, em doentes com patologia Cirúrgica, internados num serviço de Cirurgia Geral. Para esse fim obtive dados clínicos, operatórios, o resultado da intervenção e o tempo de internamento pós-operatório em doentes submetidos a um leque amplo de intervenções de Cirurgia abdominal. Construí um sistema computacional baseado em redes neuronais, utilizando os paradigmas considerados mais adequados para o tipo de variável a prever. Analisei em seguida o desempenho dos modelos obtidos. Construí um programa capaz de recolher os dados clínicos e apresentar o resultado da sua avaliação pelas redes neuronais criadas, sem envolver o seu utilizador nos aspectos técnicos da manipulação das redes neuronais. Para cumprimento desta estratégia procurei atingir os seguintes objectivos: Recolher dados de identificação, manifestações clínicas, tipo de doença(s), diagnósticos, características da intervenção cirúrgica e resultado, referentes a um conjunto de doentes suficiente para a construção de uma rede neuronal, com o número de variáveis empregue. Construir uma base de dados com os elementos de informação assim obtidos. Eliminar todos os casos em que se verificou faltar um elemento de informação. Criar dois grupos de casos, mutuamente exclusivos, para construção e validação das redes neuronais. Criar, com base nos elementos diagnósticos e resultado, 7 grupos não exclusivos, para avaliação das redes criadas. Avaliar estatisticamente as características dos grupos criados, para os comparar e caracterizar. Proceder à escolha de um programa para criação de redes neuronais em função da variedade de paradigmas oferecidos, facilidade de utilização, uso diversificado em diversos ambientes e mercados e a possibilidade de aceder às redes criadas, através de uma linguagem de programação de alto nível. Construir três tipos de redes diferentes. Cada tipo de rede utilizando um algoritmo diferente e adequado ao tipo de variável que se deseja prever. Avaliar as redes no que se refere à sua sensibilidade, especificidade, capacidade discriminativa e calibração. Criar um programa,usando a linguagem de programação "Delphi"©, para captura de dados, articulação dos mesmos com as redes neuronais criadas e expressão dos resultados prognósticos; esse programa permite alterar os valores dos elementos clínicos e verificar a repercussão dessa alteração no prognóstico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatório de projecto apresentado como requisito parcial para obtenção do grau de mestre em Estatística e Gestão de Informação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para a obtenção do grau de mestre em Estatística e Gestão de Informação.