233 resultados para Reddy
Resumo:
Biologic valve re-replacement was examined in a series of 1343 patients who underwent aortic valve replacement at The Prince Charles Hospital, Brisbane, with a cryopreserved or 4 degrees C stored allograft valve or a xenograft valve, A parametric model approach was used to simultaneously model the competing risks of death without re-replacement and re-replacement before death, One hundred eleven patients underwent a first re-replacement for a variety of reasons (69 patients with xenograft valves, 28 patients with 4 degrees C stored allograft valves, and 14 patients with cryopreserved allograft valves), By multivariable analysis younger age at operation was associated with xenograft, 4 degrees C stored allograft, and cryopreserved allograft valve re-replacement, However, this effect was examined in the context of longer survival of younger patients, which increases their exposure to the risk of re-replacement as compared with that in older patients whose decreased survival reduced their probability of requiring valve re-replacement, In patients older than 60 years at the time of aortic valve replacement, the probability of re-replacement (for any reason) before death was similar for xenografts and cryopreserved allograft valves but higher for 4 degrees C stored valves, However, in patients younger than 60 years, the probability of re-replacement at any time during the remainder of the life of the patient was lower with the cryopreserved allograft valve compared with the xenograft valve and 4 degrees C stored allografts.
Resumo:
Background: This study of a chronic porcine postinfarction model examined whether linear epicardial cryoablation was capable of creating large, homogenous lesions in regions of the myocardium including scarred ventricle. Endocardial and epicardial focal cryolesions were also compared to determine if there were significant differences in lesion characteristics. Methods: Eighty focal endocardial and 28 focal epicardial cryoapplications were delivered to eight normal caprine and four normal porcine ventricular myocardium, and 21 linear cryolesions were applied along the border of infarcted epicardial tissue in a chronic porcine infarct model in six swines. Results: Focal endocardial cryolesions in normal animals measured 9.7 +/- 0.4 mm (length) by 7.3 +/- 1.4 mm (width) by 4.8 +/- 0.2 mm (depth), while epicardial lesions measured 10.2 +/- 1.4 mm (length) by 7.7 +/- 2 mm (width) by 4.6 +/- 0.9 mm (depth); P > 0.05. Linear epicardial cryolesions in the chronic porcine infarct model measured 36.5 +/- 7.8 mm (length) by 8.2 +/- 1.3 mm (width) by 6.0 +/- 1.2 mm (depth). The mean depth of linear cryolesions applied to the border of the infarct scar was 7 +/- 0.7 mm, as measured by magnetic resonance imaging. Conclusions:Cryoablation can create deep lesions when delivered to the ventricular epicardium. Endocardial and epicardial cryolesions created by a focal cryoablation catheter are similar in size and depth. The ability to rapidly create deep linear cryolesions may prove to be beneficial in substrate-based catheter ablation of ventricular arrhythmias.
Resumo:
The objectives of this study were to evaluate the outcomes of our patients admitted with hip fractures, and to benchmark these results with other hospitals, initially in Europe and subsequently in Australia. The Standardised Audit of Hip Fractures in Europe (SAHFE) questionnaires was used as the data gathering instrument. The participants were all patients admitted to Redcliffe Hospital with a fractured neck of femur prior to surgery. This paper reports the results of the first 70 consecutive patients admitted to Redcliffe Hospital with a fractured neck of femur from November 1st 2000. The main outcome measures were mobility, independence, residence prior to fracture; type of fracture and surgical repair; and time to surgery, survival rates and discharge destination. Results: 43 patients were admitted from home, but only 13 returned home directly from the orthopaedic ward. It is hoped that most of the 26 transferred to the rehabilitation ward will ultimately return home. 7 patients died, these were aged 82 to 102, and all had premorbid disease. Delays in surgery were apparent for 13 patients, mainly due to administrative problems. Conclusions: We support the recommendation in the Fifteenth Scottish Intercollegiate Guidelines Network Publication on the management of hip fractures, that all units treating this condition should enter an audit to evaluate their management. (author abstract)
Resumo:
Predisposition to melanoma is genetically heterogeneous. Two high penetrance susceptibility genes, CDKN2A and CDK4, have so far been identified and mapping is ongoing to localize and identify others. With the advent of a catalogue of millions of potential DNA polymorphisms, attention is now also being focused on identification of genes that confer a more modest contribution to melanoma risk, such as those encoding proteins involved in pigmentation, DNA repair, cell growth and differentiation or detoxification of metabolites. One such pigmentation gene, MC1R, has not only been found to be a low penetrance melanoma gene but has also been shown to act as a genetic modifier of melanoma risk in individuals carrying CDKN2A mutations. Most recently, an environmental agent, ultraviolet radiation, has also been established as a modifier of melanoma risk in CDKN2A mutation carriers. Hence, melanoma is turning out to be an excellent paradigm for studying gene-gene and gene-environment interactions.
Resumo:
This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.
Stability and simulation-based design of steel scaffolding without using the effective length method
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
The three-dimensional (3D) exact solutions developed in the early 1970s by Pagano for simply supported multilayered orthotropic composite plates and later in the 1990s extended to piezoelectric plates by Heyliger have been extremely useful in the assessment and development of advanced laminated plate theories and related finite element models. In fact, the well-known test cases provided by Pagano and by Heyliger in those earlier works are still used today as benchmark solutions. However, the limited number of test cases whose 3D exact solutions have been published has somewhat restricted the assessment of recent advanced models to the same few test cases. This work aims to provide additional test cases to serve as benchmark exact solutions for the static analysis of multilayered piezoelectric composite plates. The method introduced by Heyliger to derive the 3D exact solutions has been successfully implemented using symbolic computing and a number of new test cases are here presented thoroughly. Specifically, two multilayered plates using PVDF piezoelectric material are selected as test cases under two different loading conditions and considering three plate aspect ratios for thick, moderately thick and thin plate, in a total of 12 distinct test cases. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This work provides an assessment of layerwise mixed models using least-squares formulation for the coupled electromechanical static analysis of multilayered plates. In agreement with three-dimensional (3D) exact solutions, due to compatibility and equilibrium conditions at the layers interfaces, certain mechanical and electrical variables must fulfill interlaminar C-0 continuity, namely: displacements, in-plane strains, transverse stresses, electric potential, in-plane electric field components and transverse electric displacement (if no potential is imposed between layers). Hence, two layerwise mixed least-squares models are here investigated, with two different sets of chosen independent variables: Model A, developed earlier, fulfills a priori the interiaminar C-0 continuity of all those aforementioned variables, taken as independent variables; Model B, here newly developed, rather reduces the number of independent variables, but also fulfills a priori the interlaminar C-0 continuity of displacements, transverse stresses, electric potential and transverse electric displacement, taken as independent variables. The predictive capabilities of both models are assessed by comparison with 3D exact solutions, considering multilayered piezoelectric composite plates of different aspect ratios, under an applied transverse load or surface potential. It is shown that both models are able to predict an accurate quasi-3D description of the static electromechanical analysis of multilayered plates for all aspect ratios.
Resumo:
We sought to provide a contemporary picture of the presentation, etiology, and outcome of infective endocarditis (IE) in a large patient cohort from multiple locations worldwide. Prospective cohort study of 2781 adults with definite IE who were admitted to 58 hospitals in 25 countries from June 1, 2000, through September 1, 2005. The median age of the cohort was 57.9 (interquartile range, 43.2-71.8) years, and 72.1% had native valve IE. Most patients (77.0%) presented early in the disease (<30 days) with few of the classic clinical hallmarks of IE. Recent health care exposure was found in one-quarter of patients. Staphylococcus aureus was the most common pathogen (31.2%). The mitral (41.1%) and aortic (37.6%) valves were infected most commonly. The following complications were common: stroke (16.9%), embolization other than stroke (22.6%), heart failure (32.3%), and intracardiac abscess (14.4%). Surgical therapy was common (48.2%), and in-hospital mortality remained high (17.7%). Prosthetic valve involvement (odds ratio, 1.47; 95% confidence interval, 1.13-1.90), increasing age (1.30; 1.17-1.46 per 10-year interval), pulmonary edema (1.79; 1.39-2.30), S aureus infection (1.54; 1.14-2.08), coagulase-negative staphylococcal infection (1.50; 1.07-2.10), mitral valve vegetation (1.34; 1.06-1.68), and paravalvular complications (2.25; 1.64-3.09) were associated with an increased risk of in-hospital death, whereas viridans streptococcal infection (0.52; 0.33-0.81) and surgery (0.61; 0.44-0.83) were associated with a decreased risk. In the early 21st century, IE is more often an acute disease, characterized by a high rate of S aureus infection. Mortality remains relatively high.
Resumo:
Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.