1000 resultados para Red bayesiana
Resumo:
Se propone, al amparo del proyecto “Nuevos Algoritmos para la Gestión Eficiente de Contenidos Multimediaen Redes de Comunicaciones Móviles” (NAGEC), un nuevo mecanismo para la búsqueda y recuperación deimágenes basado en realimentación de relevancia. La arquitectura propuesta se compone de una red neuronal yun tesauro. La red neuronal extrae de las imágenes dos parámetros: textura y color. El tesauro recoge lasrelaciones semánticas existentes entre los términos descriptores de las imágenes de la base de datos VisTex.Ambos componentes se relacionan mediante un modelo de realimentación de relevancia que, a través de lasinteracciones del usuario con el tesauro durante el proceso de búsqueda, permite a la red aprender relacionessemánticas inherentes a las imágenes.
Resumo:
Resumen tomado de la publicación
Resumo:
Es imperante que en Ecuador las entidades del sector financiero tomen acciones de control más fuertes para la prevención del lavado de activos y financiamiento del terrorismo (LA/FT), ya que este riesgo representa una amenaza para la estabilidad del sector financiero y para la integridad de los mercados. Por lo expuesto, el presente trabajo de investigación tiene como objetivo establecer una metodología adecuada en la administración del riesgo de lavado de activos y financiación del terrorismo para la Corporación Financiera Nacional (CFN) en sus operaciones de segundo piso, como parte de la gestión del riesgo operativo, que permita prevenirlo, detectarlo y reportarlo oportuna, eficiente y eficazmente. La presente investigación se enmarca en un estudio descriptivo, ya que pretende identificar los elementos de una adecuada administración del riesgo LA/FT para contrastarlos con los elementos aplicados en la CFN en sus operaciones de segundo piso, y efectuar una propuesta de una metodología para determinar la probabilidad de ocurrencia del riesgo en estudio. Como resultado se estableció que los componentes clave de una metodología de prevención LA/FT se refieren a contar con una estructura adecuada de la Unidad de Cumplimiento, determinar el perfil de riesgo a nivel institucional, diseño de un sistema de prevención de LA/FT basado en el perfil de riesgo institucional y la implementación de controles internos eficientes y eficaces, que permitan la aplicación del sistema de prevención. En ese sentido, se realizó un diagnóstico sobre la administración de riesgo LA/FT de la CFN como banca de segundo piso, del cual se obtuvo que el riesgo de la CFN es moderado. Adicionalmente, se efectuó una propuesta para la aplicación de un modelo de red bayesiana con los factores de riesgo LA/FT para establecer la probabilidad de ocurrencia del riesgo, insumo importante para encaminar las acciones de control para prevenir el riesgo. Por lo expuesto, en relación a la prevención de lavado de activos y financiamiento del terrorismo en Instituciones Financieras, en la presente tesis se abordan aspectos sobre su definición; administración; diagnóstico; prevención, detección y control.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
Desentrañar el funcionamiento del cerebro es uno de los principales desafíos a los que se enfrenta la ciencia actual. Un área de estudio que ha despertado muchas expectativas e interés es el análisis de la estructura cortical desde el punto de vista morfológico, de manera que se cree una simulación del cerebro a nivel molecular. Con ello se espera poder profundizar en el estudio de numerosas enfermedades neurológicas y patológicas. Con el desarrollo de este proyecto se persigue el estudio del soma y de las espinas desde el punto de vista de la neuromorfología teórica. Es común en el estado del arte que en el análisis de las características morfológicas de una neurona en tres dimensiones el soma sea ignorado o, en el mejor de los casos, que sea sustituido por una simple esfera. De hecho, el concepto de soma resulta abstracto porque no se dispone de una dfinición estricta y robusta que especifique exactamente donde finaliza y comienzan las dendritas. En este proyecto se alcanza por primera vez una definición matemática de soma para determinar qué es el soma. Con el fin de simular somas se ahonda en los atributos utilizados en el estado del arte. Estas propiedades, de índole genérica, no especifican una morfología única. Es por ello que se propone un método que agrupe propiedades locales y globales de la morfología. En disposición de las características se procede con la categorización del cuerpo celular en distintas clases a partir de un nuevo subtipo de red bayesiana dinámica adaptada al espacio. Con ello se discute la existencia de distintas clases de somas y se descubren las diferencias entre los somas piramidales de distintas capas del cerebro. A partir del modelo matemático se simulan por primera vez somas virtuales. Algunas morfologías de espinas han sido atribuidas a ciertos comportamientos cognitivos. Por ello resulta de interés dictaminar las clases existentes y relacionarlas con funciones de la actividad cerebral. La clasificación más extendida (Peters y Kaiserman-Abramof, 1970) presenta una definición ambigua y subjetiva dependiente de la interpretación de cada individuo y por tanto discutible. Este estudio se sustenta en un conjunto de descriptores extraídos mediante una técnica de análisis topológico local para representaciones 3D. Sobre estos datos se trata de alcanzar el conjunto de clases más adecuado en el que agrupar las espinas así como de describir cada grupo mediante reglas unívocas. A partir de los resultados, se discute la existencia de un continuo de espinas y las propiedades que caracterizan a cada subtipo de espina. ---ABSTRACT---Unravel how the brain works is one of the main challenges faced by current science. A field of study which has aroused great expectations and interest is the analysis of the cortical structure from a morphological point of view, so that a molecular level simulation of the brain is achieved. This is expected to deepen the study of many neurological and pathological diseases. This project seeks the study of the soma and spines from the theoretical neuromorphology point of view. In the state of the art it is common that when it comes to analyze the morphological characteristics of a three dimension neuron the soma is ignored or, in the best case, it is replaced by a simple sphere. In fact, the concept of soma is abstract because there is not a robust and strict definition on exactly where it ends and dendrites begin. In this project a mathematical definition is reached for the first time to determine what a soma is. With the aim to simulate somas the atributes applied in the state of the art are studied. These properties, generic in nature, do not specify a unique morphology. It is why it was proposed a method to group local and global morphology properties. In arrangement of the characteristics it was proceed with the categorization of the celular body into diferent classes by using a new subtype of dynamic Bayesian network adapted to space. From the result the existance of different classes of somas and diferences among pyramidal somas from distinct brain layers are discovered. From the mathematical model virtual somas were simulated for the first time. Some morphologies of spines have been attributed to certain cognitive behaviours. For this reason it is interesting to rule the existent classes and to relate them with their functions in the brain activity. The most extended classification (Peters y Kaiserman-Abramof, 1970) presents an ambiguous and subjective definition that relies on the interpretation of each individual and consequently it is arguable. This study was based on the set of descriptors extracted from a local topological analysis technique for 3D representations. On these data it was tried to reach the most suitable set of classes to group the spines as well as to describe each cluster by unambiguous rules. From these results, the existance of a continuum of spines and the properties that characterize each spine subtype were discussed .
Resumo:
El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.
Resumo:
En esta Tesis Doctoral se emplean y desarrollan Métodos Bayesianos para su aplicación en análisis geotécnicos habituales, con un énfasis particular en (i) la valoración y selección de modelos geotécnicos basados en correlaciones empíricas; en (ii) el desarrollo de predicciones acerca de los resultados esperados en modelos geotécnicos complejos. Se llevan a cabo diferentes aplicaciones a problemas geotécnicos, como es el caso de: (1) En el caso de rocas intactas, se presenta un método Bayesiano para la evaluación de modelos que permiten estimar el módulo de Young a partir de la resistencia a compresión simple (UCS). La metodología desarrollada suministra estimaciones de las incertidumbres de los parámetros y predicciones y es capaz de diferenciar entre las diferentes fuentes de error. Se desarrollan modelos "específicos de roca" para los tipos de roca más comunes y se muestra cómo se pueden "actualizar" esos modelos "iniciales" para incorporar, cuando se encuentra disponible, la nueva información específica del proyecto, reduciendo las incertidumbres del modelo y mejorando sus capacidades predictivas. (2) Para macizos rocosos, se presenta una metodología, fundamentada en un criterio de selección de modelos, que permite determinar el modelo más apropiado, entre un conjunto de candidatos, para estimar el módulo de deformación de un macizo rocoso a partir de un conjunto de datos observados. Una vez que se ha seleccionado el modelo más apropiado, se emplea un método Bayesiano para obtener distribuciones predictivas de los módulos de deformación de macizos rocosos y para actualizarlos con la nueva información específica del proyecto. Este método Bayesiano de actualización puede reducir significativamente la incertidumbre asociada a la predicción, y por lo tanto, afectar las estimaciones que se hagan de la probabilidad de fallo, lo cual es de un interés significativo para los diseños de mecánica de rocas basados en fiabilidad. (3) En las primeras etapas de los diseños de mecánica de rocas, la información acerca de los parámetros geomecánicos y geométricos, las tensiones in-situ o los parámetros de sostenimiento, es, a menudo, escasa o incompleta. Esto plantea dificultades para aplicar las correlaciones empíricas tradicionales que no pueden trabajar con información incompleta para realizar predicciones. Por lo tanto, se propone la utilización de una Red Bayesiana para trabajar con información incompleta y, en particular, se desarrolla un clasificador Naïve Bayes para predecir la probabilidad de ocurrencia de grandes deformaciones (squeezing) en un túnel a partir de cinco parámetros de entrada habitualmente disponibles, al menos parcialmente, en la etapa de diseño. This dissertation employs and develops Bayesian methods to be used in typical geotechnical analyses, with a particular emphasis on (i) the assessment and selection of geotechnical models based on empirical correlations; on (ii) the development of probabilistic predictions of outcomes expected for complex geotechnical models. Examples of application to geotechnical problems are developed, as follows: (1) For intact rocks, we present a Bayesian framework for model assessment to estimate the Young’s moduli based on their UCS. Our approach provides uncertainty estimates of parameters and predictions, and can differentiate among the sources of error. We develop ‘rock-specific’ models for common rock types, and illustrate that such ‘initial’ models can be ‘updated’ to incorporate new project-specific information as it becomes available, reducing model uncertainties and improving their predictive capabilities. (2) For rock masses, we present an approach, based on model selection criteria to select the most appropriate model, among a set of candidate models, to estimate the deformation modulus of a rock mass, given a set of observed data. Once the most appropriate model is selected, a Bayesian framework is employed to develop predictive distributions of the deformation moduli of rock masses, and to update them with new project-specific data. Such Bayesian updating approach can significantly reduce the associated predictive uncertainty, and therefore, affect our computed estimates of probability of failure, which is of significant interest to reliability-based rock engineering design. (3) In the preliminary design stage of rock engineering, the information about geomechanical and geometrical parameters, in situ stress or support parameters is often scarce or incomplete. This poses difficulties in applying traditional empirical correlations that cannot deal with incomplete data to make predictions. Therefore, we propose the use of Bayesian Networks to deal with incomplete data and, in particular, a Naïve Bayes classifier is developed to predict the probability of occurrence of tunnel squeezing based on five input parameters that are commonly available, at least partially, at design stages.
Resumo:
Esta tesis doctoral propone un modelo de comportamiento del paciente de la clínica dental, basado en la percepción de la calidad del servicio (SERVQUAL), la fidelización del paciente, acciones de Marketing Relacional y aspectos socioeconómicos relevantes, de los pacientes de clínicas dentales. En particular, el estudio de campo se lleva a cabo en el ámbito geográfico de la Comunidad de Madrid, España, durante los años 2012 y 2013. La primera parte del proceso de elaboración del modelo está basada en la recolección de datos. Para ello, se realizaron cinco entrevistas a expertos dentistas y se aplicaron dos tipos encuestas diferentes: una para el universo formado por el conjunto de los pacientes de las clínicas dentales y la otra para el universo formado el conjunto de los dentistas de las clínicas dentales de la Comunidad de Madrid. Se obtuvo muestras de: 200 encuestas de pacientes y 220 encuestas de dentistas activos colegiados en el Ilustre Colegio Oficial de Odontólogos y Estomatólogos de la I Región Madrid. En la segunda parte de la elaboración del modelo, se realizó el análisis de los datos, la inducción y síntesis del modelo propuesto. Se utilizó la metodología de modelos gráficos probabilísticos, específicamente, una Red Bayesiana, donde se integraron variables (nodos) y sus dependencias estadísticas causales (arcos dirigidos), que representan el conocimiento obtenido de los datos recopilados en las encuestas y el conocimiento derivado de investigaciones precedentes en el área. Se obtuvo una Red Bayesiana compuesta por 6 nodos principales, de los cuales dos de ellos son nodos de observación directa: “Revisit Intention” y “SERVQUAL”, y los otros cuatro nodos restantes son submodelos (agrupaciones de variables), estos son respectivamente: “Attitudinal”, “Disease Information”, “Socioeconomical” y “Services”. Entre las conclusiones principales derivadas del uso del modelo, como herramientas de inferencia y los análisis de las entrevistas realizadas se obtiene que: (i) las variables del nodo “Attitudinal” (submodelo), son las más sensibles y significativas. Al realizarse imputaciones particulares en las variables que conforman el nodo “Attitudinal” (“RelationalMk”, “Satisfaction”, “Recommendation” y “Friendship”) se obtienen altas probabilidades a posteriori en la fidelidad del paciente de la clínica dental, medida por su intención de revisita. (ii) En el nodo “Disease Information” (submodelo) se destaca la relación de dependencia causal cuando se imputa la variable “Perception of disease” en “SERVQUAL”, demostrando que la percepción de la gravedad del paciente condiciona significativamente la percepción de la calidad del servicio del paciente. Como ejemplo destacado, si se realiza una imputación en la variable “Clinic_Type” se obtienen altas probabilidades a posteriori de las variables “SERVQUAL” y “Revisit Intention”, lo que evidencia, que el tipo de clínica dental influye significativamente en la percepción de la calidad del servicio y en la fidelidad del paciente (intención de revisita). (iii) En el nodo “Socioeconomical” (submodelo) la variable “Sex” resultó no ser significativa cuando se le imputaban diferentes valores, por el contrario, la variable “Age” e “Income” mostraban altas variabilidades en las probabilidades a posteriori cuando se imputaba alguna variable del submodelo “Services”, lo que evidencia, que estas variables condicionan la intención de contratar servicios (“Services”), sobretodo en las franjas de edad de 30 a 51 años en pacientes con ingresos entre 3000€ y 4000€. (iv) En el nodo “Services” (submodelo) los pacientes de las clínicas dentales mostraron altas probabilidades a priori para contratar servicios de fisiotrapia oral y gingival: “Dental Health Education” y “Parking”. (v) Las variables de fidelidad del paciente medidas desde su perspectiva comportamental que fueron utilizadas en el modelo: “Visit/year” “Time_clinic”, no aportaron información significativa. Tampoco, la variable de fidelidad del cliente (actitudinal): “Churn Efford”. (vi) De las entrevistas realizadas a expertos dentistas se obtiene que, los propietarios de la clínica tradicional tienen poca disposición a implementar nuevas estrategias comerciales, debido a la falta de formación en la gestión comercial y por falta de recursos y herramientas. Existe un rechazo generalizado hacia los nuevos modelos de negocios de clínicas dentales, especialmente en las franquicias y en lo que a políticas comerciales se refiere. Esto evidencia una carencia de gerencia empresarial en el sector. Como líneas futuras de investigación, se propone profundizar en algunas relaciones de dependencia (causales) como SERVQUALServices; SatisfactionServices; RelationalMKServices, Perception of diseaseSatisfaction, entre otras. Así como, otras variables de medición de la fidelidad comportamental que contribuyan a la mejora del modelo, como por ej. Gasto del paciente y rentabilidad de la visita. ABSTRACT This doctoral dissertation proposes a model of the behavior of the dental-clinic customer, based on the service-quality perception (SERVQUAL), loyalty, Relational Marketing and some relevant socio-economical characteristics, of the dental-clinic customers. In particular, the field study has been developed in the geographical region of Madrid, Spain during the years 2012 and 2013. The first stage of the preparation of the model consist in the data gathering process. For this purpose, five interviews where realized to expert dentists and also two different types of surveys: one for the universe defined by the set of dental-clinic patients and the second for the universe defined by the set of the dentists of the dental clinics of the Madrid Community. A sample of 200 surveys where collected for patients and a sample of 220 surveys where collected from active dentists belonging to the Ilustre Colegio Oficial de Odontólogos y Estomatólogos de la I Región Madrid. In the second stage of the model preparation, the processes of data-analysis, induction and synthesis of the final model where performed. The Graphic Probabilistic Models methodology was used to elaborate the final model, specifically, a Bayesian Network, where the variables (nodes) and their statistical and causal dependencies where integrated and modeled, representing thus, the obtained knowledge from the data obtained by the surveys and the scientific knowledge derived from previous research in the field. A Bayesian Net consisting on six principal nodes was obtained, of which two of them are directly observable: “Revisit Intention” y “SERVQUAL”, and the remaining four are submodels (a grouping of variables). These are: “Attitudinal”, “Disease Information”, “Socioeconomical” and “Services”. The main conclusions derived from the model, as an inference tool, and the analysis of the interviews are: (i) the variables inside the “Attitudinal” node are the most sensitive and significant. By making some particular imputations on the variables that conform the “Attitudinal” node (“RelationalMk”, “Satisfaction”, “Recommendation” y “Friendship”), high posterior probabilities (measured in revisit intention) are obtained for the loyalty of the dental-clinic patient. (ii) In the “Disease Information” node, the causal relation between the “Perception of disease” and “SERVQUAL” when “Perception of disease” is imputed is highlighted, showing that the perception of the severity of the patient’s disease conditions significantly the perception of service quality. As an example, by imputing some particular values to the “Clinic_Type” node high posterior probabilities are obtained for the “SERVQUAL” variables and for “Revisit Intention” showing that the clinic type influences significantly in the service quality perception and loyalty (revisit intention). (iii) In the “Socioeconomical” variable, the variable “Sex” showed to be non-significant, however, the “Age” variable and “Income” show high variability in its posterior probabilities when some variable from the “Services” node where imputed, showing thus, that these variables condition the intention to buy new services (“Services”), especially in the age range from 30 to 50 years in patients with incomes between 3000€ and 4000€. (iv) In the “Services” submodel the dental-clinic patients show high priors to buy services such as oral and gingival therapy, Dental Health Education and “Parking” service. (v) The obtained loyalty measures, from the behavioral perspective, “Visit/year” and “Time_clinic”, do not add significant information to the model. Neither the attitudinal loyalty component “Churn Efford”. (vi) From the interviews realized to the expert dentists it is observed that the owners of the traditional clinics have a low propensity to apply new commercial strategies due to a lack of resources and tools. In general, there exists an opposition to new business models in the sector, especially to the franchise dental model. All of this evidences a lack in business management in the sector. As future lines of research, a deep look into some statistical and causal relations is proposed, such as: SERVQUALServices; SatisfactionServices; RelationalMKServices, Perception of diseaseSatisfaction, as well as new measurement variables related to attitudinal loyalty that contribute to improve the model, for example, profit per patient and per visit.
Resumo:
En la actualidad, la gestión de embalses para el control de avenidas se realiza, comúnmente, utilizando modelos de simulación. Esto se debe, principalmente, a su facilidad de uso en tiempo real por parte del operador de la presa. Se han desarrollado modelos de optimización de la gestión del embalse que, aunque mejoran los resultados de los modelos de simulación, su aplicación en tiempo real se hace muy difícil o simplemente inviable, pues está limitada al conocimiento de la avenida futura que entra al embalse antes de tomar la decisión de vertido. Por esta razón, se ha planteado el objetivo de desarrollar un modelo de gestión de embalses en avenidas que incorpore las ventajas de un modelo de optimización y que sea de fácil uso en tiempo real por parte del gestor de la presa. Para ello, se construyó un modelo de red Bayesiana que representa los procesos de la cuenca vertiente y del embalse y, que aprende de casos generados sintéticamente mediante un modelo hidrológico agregado y un modelo de optimización de la gestión del embalse. En una primera etapa, se generó un gran número de episodios sintéticos de avenida utilizando el método de Monte Carlo, para obtener las lluvias, y un modelo agregado compuesto de transformación lluvia- escorrentía, para obtener los hidrogramas de avenida. Posteriormente, se utilizaron las series obtenidas como señales de entrada al modelo de gestión de embalses PLEM, que optimiza una función objetivo de costes mediante programación lineal entera mixta, generando igual número de eventos óptimos de caudal vertido y de evolución de niveles en el embalse. Los episodios simulados fueron usados para entrenar y evaluar dos modelos de red Bayesiana, uno que pronostica el caudal de entrada al embalse, y otro que predice el caudal vertido, ambos en un horizonte de tiempo que va desde una a cinco horas, en intervalos de una hora. En el caso de la red Bayesiana hidrológica, el caudal de entrada que se elige es el promedio de la distribución de probabilidad de pronóstico. En el caso de la red Bayesiana hidráulica, debido al comportamiento marcadamente no lineal de este proceso y a que la red Bayesiana devuelve un rango de posibles valores de caudal vertido, se ha desarrollado una metodología para seleccionar un único valor, que facilite el trabajo del operador de la presa. Esta metodología consiste en probar diversas estrategias propuestas, que incluyen zonificaciones y alternativas de selección de un único valor de caudal vertido en cada zonificación, a un conjunto suficiente de episodios sintéticos. Los resultados de cada estrategia se compararon con el método MEV, seleccionándose las estrategias que mejoran los resultados del MEV, en cuanto al caudal máximo vertido y el nivel máximo alcanzado por el embalse, cualquiera de las cuales puede usarse por el operador de la presa en tiempo real para el embalse de estudio (Talave). La metodología propuesta podría aplicarse a cualquier embalse aislado y, de esta manera, obtener, para ese embalse particular, diversas estrategias que mejoran los resultados del MEV. Finalmente, a modo de ejemplo, se ha aplicado la metodología a una avenida sintética, obteniendo el caudal vertido y el nivel del embalse en cada intervalo de tiempo, y se ha aplicado el modelo MIGEL para obtener en cada instante la configuración de apertura de los órganos de desagüe que evacuarán el caudal. Currently, the dam operator for the management of dams uses simulation models during flood events, mainly due to its ease of use in real time. Some models have been developed to optimize the management of the reservoir to improve the results of simulation models. However, real-time application becomes very difficult or simply unworkable, because the decision to discharge depends on the unknown future avenue entering the reservoir. For this reason, the main goal is to develop a model of reservoir management at avenues that incorporates the advantages of an optimization model. At the same time, it should be easy to use in real-time by the dam manager. For this purpose, a Bayesian network model has been developed to represent the processes of the watershed and reservoir. This model learns from cases generated synthetically by a hydrological model and an optimization model for managing the reservoir. In a first stage, a large number of synthetic flood events was generated using the Monte Carlo method, for rain, and rain-added processing model composed of runoff for the flood hydrographs. Subsequently, the series obtained were used as input signals to the reservoir management model PLEM that optimizes a target cost function using mixed integer linear programming. As a result, many optimal discharge rate events and water levels in the reservoir levels were generated. The simulated events were used to train and test two models of Bayesian network. The first one predicts the flow into the reservoir, and the second predicts the discharge flow. They work in a time horizon ranging from one to five hours, in intervals of an hour. In the case of hydrological Bayesian network, the chosen inflow is the average of the probability distribution forecast. In the case of hydraulic Bayesian network the highly non-linear behavior of this process results on a range of possible values of discharge flow. A methodology to select a single value has been developed to facilitate the dam operator work. This methodology tests various strategies proposed. They include zoning and alternative selection of a single value in each discharge rate zoning from a sufficient set of synthetic episodes. The results of each strategy are compared with the MEV method. The strategies that improve the outcomes of MEV are selected and can be used by the dam operator in real time applied to the reservoir study case (Talave). The methodology could be applied to any single reservoir and, thus, obtain, for the particular reservoir, various strategies that improve results from MEV. Finally, the methodology has been applied to a synthetic flood, obtaining the discharge flow and the reservoir level in each time interval. The open configuration floodgates to evacuate the flow at each interval have been obtained applying the MIGEL model.
Resumo:
Esta tesis presenta el diseño y la aplicación de una metodología que permite la determinación de los parámetros para la planificación de nodos e infraestructuras logísticas en un territorio, considerando además el impacto de estas en los diferentes componentes territoriales, así como en el desarrollo poblacional, el desarrollo económico y el medio ambiente, presentando así un avance en la planificación integral del territorio. La Metodología propuesta está basada en Minería de Datos, que permite el descubrimiento de patrones detrás de grandes volúmenes de datos previamente procesados. Las características propias de los datos sobre el territorio y los componentes que lo conforman hacen de los estudios territoriales un campo ideal para la aplicación de algunas de las técnicas de Minería de Datos, tales como los ´arboles decisión y las redes bayesianas. Los árboles de decisión permiten representar y categorizar de forma esquemática una serie de variables de predicción que ayudan al análisis de una variable objetivo. Las redes bayesianas representan en un grafo acíclico dirigido, un modelo probabilístico de variables distribuidas en padres e hijos, y la inferencia estadística que permite determinar la probabilidad de certeza de una hipótesis planteada, es decir, permiten construir modelos de probabilidad conjunta que presentan de manera gráfica las dependencias relevantes en un conjunto de datos. Al igual que con los árboles de decisión, la división del territorio en diferentes unidades administrativas hace de las redes bayesianas una herramienta potencial para definir las características físicas de alguna tipología especifica de infraestructura logística tomando en consideración las características territoriales, poblacionales y económicas del área donde se plantea su desarrollo y las posibles sinergias que se puedan presentar sobre otros nodos e infraestructuras logísticas. El caso de estudio seleccionado para la aplicación de la metodología ha sido la República de Panamá, considerando que este país presenta algunas características singulares, entra las que destacan su alta concentración de población en la Ciudad de Panamá; que a su vez a concentrado la actividad económica del país; su alto porcentaje de zonas protegidas, lo que ha limitado la vertebración del territorio; y el Canal de Panamá y los puertos de contenedores adyacentes al mismo. La metodología se divide en tres fases principales: Fase 1: Determinación del escenario de trabajo 1. Revisión del estado del arte. 2. Determinación y obtención de las variables de estudio. Fase 2: Desarrollo del modelo de inteligencia artificial 3. Construcción de los ´arboles de decisión. 4. Construcción de las redes bayesianas. Fase 3: Conclusiones 5. Determinación de las conclusiones. Con relación al modelo de planificación aplicado al caso de estudio, una vez aplicada la metodología, se estableció un modelo compuesto por 47 variables que definen la planificación logística de Panamá, el resto de variables se definen a partir de estas, es decir, conocidas estas, el resto se definen a través de ellas. Este modelo de planificación establecido a través de la red bayesiana considera los aspectos de una planificación sostenible: económica, social y ambiental; que crean sinergia con la planificación de nodos e infraestructuras logísticas. The thesis presents the design and application of a methodology that allows the determination of parameters for the planning of nodes and logistics infrastructure in a territory, besides considering the impact of these different territorial components, as well as the population growth, economic and environmental development. The proposed methodology is based on Data Mining, which allows the discovery of patterns behind large volumes of previously processed data. The own characteristics of the territorial data makes of territorial studies an ideal field of knowledge for the implementation of some of the Data Mining techniques, such as Decision Trees and Bayesian Networks. Decision trees categorize schematically a series of predictor variables of an analyzed objective variable. Bayesian Networks represent a directed acyclic graph, a probabilistic model of variables divided in fathers and sons, and statistical inference that allow determine the probability of certainty in a hypothesis. The case of study for the application of the methodology is the Republic of Panama. This country has some unique features: a high population density in the Panama City, a concentration of economic activity, a high percentage of protected areas, and the Panama Canal. The methodology is divided into three main phases: Phase 1: definition of the work stage. 1. Review of the State of the art. 2. Determination of the variables. Phase 2: Development of artificial intelligence model 3. Construction of decision trees. 4. Construction of Bayesian Networks. Phase 3: conclusions 5. Determination of the conclusions. The application of the methodology to the case study established a model composed of 47 variables that define the logistics planning for Panama. This model of planning established through the Bayesian network considers aspects of sustainable planning and simulates the synergies between the nodes and logistical infrastructure planning.
Resumo:
Propolis is a resin that bees collect from different plant sources and use in the defense of the bee community. The intricate composition of propolis varies depending on plant sources from different geographic regions and many types have been reported. Red coloured propolis found in several states in Brazil and in other countries has known antimicrobial and antioxidant activity. Different analytical methods have been applied to studies regarding the chemical composition and plant origins of red propolis. In this study samples of red propolis from different regions have been characterised using direct infusion electrospray ionisation mass spectrometry (ESI(-)-MS) fingerprinting. Data from the fingerprints was extracted and analysed by multivariate analysis to group the samples according to their composition and marker compounds. Despite similar colour, the red coloured propolis samples were divided into three groups due to contrasting chemical composition, confirming the need to properly characterise the chemical composition of propolis.
Resumo:
In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms.
Resumo:
Frailty and anemia in the elderly appear to share a common pathophysiology associated with chronic inflammatory processes. This study uses an analytical, cross-sectional, population-based methodology to investigate the probable relationships between frailty, red blood cell parameters and inflammatory markers in 255 community-dwelling elders aged 65 years or older. The frailty phenotype was assessed by non-intentional weight loss, fatigue, low grip strength, low energy expenditure and reduced gait speed. Blood sample analyses were performed to determine hemoglobin level, hematocrit and reticulocyte count, as well as the inflammatory variables IL-6, IL-1ra and hsCRP. In the first multivariate analysis (model I), considering only the erythroid parameters, Hb concentration was a significant variable for both general frailty status and weight loss: a 1.0g/dL drop in serum Hb concentration represented a 2.02-fold increase (CI 1.12-3.63) in an individual's chance of being frail. In the second analysis (model II), which also included inflammatory cytokine levels, hsCRP was independently selected as a significant variable. Each additional year of age represented a 1.21-fold increase in the chance of being frail, and each 1-unit increase in serum hsCRP represented a 3.64-fold increase in the chance of having the frailty phenotype. In model II reticulocyte counts were associated with weight loss and reduced metabolic expenditure criteria. Our findings suggest that reduced Hb concentration, reduced RetAbs count and elevated serum hsCRP levels should be considered components of frailty, which in turn is correlated with sarcopenia, as evidenced by weight loss.
Resumo:
99
Resumo:
The purpose of this study was to evaluate the effectiveness of mature red cell and reticulocyte parameters under three conditions: iron deficiency anemia, anemia of chronic disease, and anemia of chronic disease associated with absolute iron deficiency. Peripheral blood cells from 117 adult patients with anemia were classified according to iron status, and inflammatory activity, and the results of a hemoglobinopathy investigation as: iron deficiency anemia (n=42), anemia of chronic disease (n=28), anemia of chronic disease associated with iron deficiency anemia (n=22), and heterozygous β thalassemia (n=25). The percentage of microcytic red cells, hypochromic red cells, and levels of hemoglobin content in both reticulocytes and mature red cells were determined. Receiver operating characteristic analysis was used to evaluate the accuracy of the parameters in differentiating between the different types of anemia. There was no significant difference between the iron deficient group and anemia of chronic disease associated with absolute iron deficiency in respect to any parameter. The percentage of hypochromic red cells was the best parameter to discriminate anemia of chronic disease with and without absolute iron deficiency (area under curve=0.785; 95% confidence interval: 0.661-0.909, with sensitivity of 72.7%, and specificity of 70.4%; cut-off value 1.8%). The formula microcytic red cells minus hypochromic red cells was very accurate in differentiating iron deficiency anemia and heterozygous β thalassemia (area under curve=0.977; 95% confidence interval: 0.950-1.005; with sensitivity of 96.2%, and specificity of 92.7%; cut-off value 13.8). The indices related to red cells and reticulocytes have a moderate performance in identifying absolute iron deficiency in patients with anemia of chronic disease.