970 resultados para Red Sea Coast (Saudi Arabia)--Maps--Early works to 1800


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reviews critically the existing information on mangrove ecosystem of Saudi Arabian Red Sea coast and identifies problems and shortcomings that should be removed or remedied. Mangrove structure and composition seems to have been substantially studied along with salient environmental features, and these are thoroughly summarized herewith. However, the functional aspects, especially energy flow through the ecosystem, remain totally neglected. Both the flora and fauna indicate severe environmental conditions, such as very low nutrient levels, very high salinity values and hard bottom, which are unique to the area. Mangrove growth and diversity is very poor, although conditions in the southern part are relatively favourable. The extreme poverty of the ecosystem is supported by exports of organic matter from adjacent seaweed and seagrass ecosystems and also Sabakhas. Preponderance of epiphytic and benthic algae within the mangrove ecosystem is another source of nutrient replenishment in the otherwise oligotrophic habitat of Red Sea. Finally, a hypothetical model of energy flow in the ecosystem is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mangroves along the Sudanese Red Sea coast are under constant anthropogenic pressure. To better understand the influence of mangrove clearance on the intertidal benthic community, we investigated the composition, biodiversity and standing stock of the macrofauna communities at high-, mid- and low-water levels in three contrasting habitats: a bare sand flat, a cleared mangrove and an intact mangrove. In addition, a community-wide metric approach based on taxon-specific carbon and nitrogen isotope values was used to compare the trophic structure between the three habitats. The habitats differed significantly in terms of macrofaunal standing stock, community composition and trophic structure. The high- and mid-water levels of the intact mangroves showed a distinct macrofaunal community characterized by elevated densities and biomass, largely governed by higher decapod and gastropod abundances. Diversity was similar for cleared and intact mangroves, but much lower for the bare sand flat. Community-wide metrics indicated highest trophic diversity and community niche breadth in the intact mangroves. Differences between the cleared and intact mangroves can be partly attributed to differences in sediment characteristics resulting from mangrove clearance. These results suggest a significant impact of mangrove clearance on the macrofaunal community and trophic structure. This study calls for further investigations and management actions to protect and restore these habitats, and ensure the survival of this ecologically valuable coastal ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

li-ʻAbd Allāh al-Shabrāwī.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release.