989 resultados para Recursive-diagnostic framework


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Work domain analysis (WDA) has been applied to a range of complex work domains, but few WDAs have been undertaken in medical contexts. One pioneering effort suggested that clinical abstraction is not based on means-ends relations, whereas another effort downplayed the role of bio-regulatory mechanisms. In this paper it is argued that bio-regulatory mechanisms that govern physiological behaviour must be part of WDA models of patients as the systems at the core of intensive care units. Furthermore it is argued that because the inner functioning of patients is not completely known, clinical abstraction is based on hypothetico-deductive abstract reasoning. This paper presents an alternative modelling framework that conforms to the broader aspirations of WDA. A modified version of the viable systems model is used to represent the patient system as a nested dissipative structure while aspects of the recognition primed decision model are used to represent the information resources available to clinicians in ways that support lsquoif...thenrsquo conceptual relations. These two frameworks come together to form the recursive diagnostic framework, which may provide a more appropriate foundation for information display design in the intensive care unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation delivers a framework to diagnose the Bull-Whip Effect (BWE) in supply chains and then identify methods to minimize it. Such a framework is needed because in spite of the significant amount of literature discussing the bull-whip effect, many companies continue to experience the wide variations in demand that are indicative of the bull-whip effect. While the theory and knowledge of the bull-whip effect is well established, there still is the lack of an engineering framework and method to systematically identify the problem, diagnose its causes, and identify remedies. ^ The present work seeks to fill this gap by providing a holistic, systems perspective to bull-whip identification and diagnosis. The framework employs the SCOR reference model to examine the supply chain processes with a baseline measure of demand amplification. Then, research of the supply chain structural and behavioral features is conducted by means of the system dynamics modeling method. ^ The contribution of the diagnostic framework, is called Demand Amplification Protocol (DAMP), relies not only on the improvement of existent methods but also contributes with original developments introduced to accomplish successful diagnosis. DAMP contributes a comprehensive methodology that captures the dynamic complexities of supply chain processes. The method also contributes a BWE measurement method that is suitable for actual supply chains because of its low data requirements, and introduces a BWE scorecard for relating established causes to a central BWE metric. In addition, the dissertation makes a methodological contribution to the analysis of system dynamic models with a technique for statistical screening called SS-Opt, which determines the inputs with the greatest impact on the bull-whip effect by means of perturbation analysis and subsequent multivariate optimization. The dissertation describes the implementation of the DAMP framework in an actual case study that exposes the approach, analysis, results and conclusions. The case study suggests a balanced solution between costs and demand amplification can better serve both firms and supply chain interests. Insights pinpoint to supplier network redesign, postponement in manufacturing operations and collaborative forecasting agreements with main distributors.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Develop and implement a diagnostic framework designed to help advisors and farmers identify the causes of poor crop performance and implement appropriate remedial measures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fault diagnosis has become an important component in intelligent systems, such as intelligent control systems and intelligent eLearning systems. Reiter's diagnosis theory, described by first-order sentences, has been attracting much attention in this field. However, descriptions and observations of most real-world situations are related to fuzziness because of the incompleteness and the uncertainty of knowledge, e. g., the fault diagnosis of student behaviors in the eLearning processes. In this paper, an extension of Reiter's consistency-based diagnosis methodology, Fuzzy Diagnosis, has been proposed, which is able to deal with incomplete or fuzzy knowledge. A number of important properties of the Fuzzy diagnoses schemes have also been established. The computing of fuzzy diagnoses is mapped to solving a system of inequalities. Some special cases, abstracted from real-world situations, have been discussed. In particular, the fuzzy diagnosis problem, in which fuzzy observations are represented by clause-style fuzzy theories, has been presented and its solving method has also been given. A student fault diagnostic problem abstracted from a simplified real-world eLearning case is described to demonstrate the application of our diagnostic framework.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence suggests that the social cognition deficits prevalent in autism spectrum disorders (ASDs) are widely distributed in first degree and extended relatives. This ¿broader autism phenotype¿ (BAP) can be extended into non-clinical populations and show wide distributions of social behaviors such as empathy and social responsiveness ¿ with ASDs exhibiting these behaviors on the lower ends of the distributions. Little evidence has previously shown relationships between self-report measures of social cognition and more objective tasks such as face perception in functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). In this study, three specific hypotheses were addressed: a) increased social ability, as measured by an increased Empathy Quotient, decreased Social Responsiveness Scale (SRS-A) score, and increased Social Attribution Task score, will predict increased activation of the fusiform gyrus in response to faces as compared to houses; b) these same measures will predict N170 amplitude and latency showing decreased latency and increased amplitude for faces as compared to houses with increased social ability; c) increased amygdala volume will predict increased fusiform gyrus activation when viewing faces as compared to houses. Findings supported all of the hypotheses. Empathy scores significantly predicted both right FFG activation [F(1,20) = 4.811, p = .041, ß = .450, R2 = 0.20] and left FFG activation [F(1,20) = 7.70, p = .012, ß = .537, R2 = 0.29]. Based on ERP results increased right lateralization face-related N170 was significantly predicted by the EQ [F(1,54) = 6.94, p = .011, ß = .338, R2 = 0.11]. Finally, total amygdala volume significantly predicted right [F(1,20) = 7.217, p = .014, ß = .515, R2 = 0.27] and left [F(1,20) = 36.77, p < .001, ß = .805, R2 = 0.65] FFG activation. Consistent with the a priori hypotheses, traits attributed to the BAP can significantly predict neural responses to faces in a non-clinical population. This is consistent with the face processing deficits seen in ASDs. The findings presented here contribute to the extension of the BAP from unaffected relatives of individuals with ASDs to the general population. These findings also give continued evidence in support of a continuous distribution of traits found in psychiatric illnesses in place of a traditional, dichotomous ¿all-or-nothing¿ diagnostic framework of neurodevelopmental and neuropsychiatric disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change is already affecting many natural systems and human environments worldwide, like the semiarid Guadiana Basin in Spain. This paper illustrates a systematic analysis of climate change adaptation in the Guadiana irrigation farming region. The study applies a solution-oriented diagnostic framework structured along a series of sequential analytical steps. An initial stage integrates economic and hydrologic modeling to evaluate the effects of climate change on the agriculture and water sectors. Next, adaptation measures are identified and prioritized through a stakeholder-based multi-criteria analysis. Finally, a social network analysis identifies key actors and their relationships in climate change adaptation. The study shows that under a severe climate change scenario, water availability could be substantially decreased and drought occurrence will augment. In consequence, farmers will adapt their crops to a lesser amount of water and income gains will diminish, particularly for smallholder farms. Among the various adaptation measures considered, those related to private farming (new crop varieties and modern irrigation technologies) are ranked highest, whereas public-funded hard measures (reservoirs) are lowest and public soft measures (insurance) are ranked middle. In addition, stakeholders highlighted that the most relevant criteria for selecting adaptation plans are environmental protection, financial feasibility and employment creation. Nonetheless, the social network analysis evidenced the need to strengthen the links among the different stakeholder groups to facilitate the implementation of adaptation processes. In sum, the diagnostic framework applied in this research can be considered a valuable tool for guiding and supporting decision making in climate change adaptation and communicating scientific results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Government actors create law against a backdrop of uncertainty. Limited information, unpredictable events, and lack of understanding interfere with accurately predicting a legal regime’s costs, benefits, and effects on other legal and social programs and institutions. Does the availability of no-fault divorce increase the number of terminated marriages? Will bulk-collection of telecommunications information about American citizens reveal terrorist plots? Can a sensitive species breed in the presence of oil and gas wells? The answers to these questions are far from clear, but lawmakers must act nonetheless. The problems posed by uncertainty cut across legal fields. Scholars and regulators in a variety of contexts recognize the importance of uncertainty, but no systematic, generally-applicable framework exists for determining how law should account for gaps in information. This Article suggests such a framework and develops a novel typology of strategies for accounting for uncertainty in governance. This typology includes “static law,” as well as three varieties of “dynamic law.” “Static law” is a legal rule initially intended to last in perpetuity. “Dynamic law” is intended to change, and includes: (1) durational regulation, or fixed legal rules with periodic opportunities for amendment or repeal; (2) adaptive regulation, or malleable legal rules with procedural mechanisms allowing rules to change; and (3) contingent regulation, or malleable legal rules with triggering mechanisms to substantively change to the rules. Each of these strategies, alone or in combination, may best address the uncertainty inherent in a particular lawmaking effort. This Article provides a diagnostic framework that lawmakers can use to identify optimal strategies. Ultimately, this approach to uncertainty yields immediate practical benefits by enabling lawmakers to better structure governance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2015-12

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose a new method for the automatic detection and tracking of road traffic signs using an on-board single camera. This method aims to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. The proposed approach exploits a combination of different features, such as color, appearance, and tracking information. This information is introduced into a recursive Bayesian decision framework, in which prior probabilities are dynamically adapted to tracking results. This decision scheme obtains a number of candidate regions in the image, according to their HS (Hue-Saturation). Finally, a Kalman filter with an adaptive noise tuning provides the required time and spatial coherence to the estimates. Results have shown that the proposed method achieves high detection rates in challenging scenarios, including illumination changes, rapid motion and significant perspective distortion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glaucoma is the second leading cause of blindness worldwide. Often, the optic nerve head (ONH) glaucomatous damage and ONH changes occur prior to visual field loss and are observable in vivo. Thus, digital image analysis is a promising choice for detecting the onset and/or progression of glaucoma. In this paper, we present a new framework for detecting glaucomatous changes in the ONH of an eye using the method of proper orthogonal decomposition (POD). A baseline topograph subspace was constructed for each eye to describe the structure of the ONH of the eye at a reference/baseline condition using POD. Any glaucomatous changes in the ONH of the eye present during a follow-up exam were estimated by comparing the follow-up ONH topography with its baseline topograph subspace representation. Image correspondence measures of L-1-norm and L-2-norm, correlation, and image Euclidean distance (IMED) were used to quantify the ONH changes. An ONH topographic library built from the Louisiana State University Experimental Glaucoma study was used to evaluate the performance of the proposed method. The area under the receiver operating characteristic curves (AUCs) was used to compare the diagnostic performance of the POD-induced parameters with the parameters of the topographic change analysis (TCA) method. The IMED and L-2-norm parameters in the POD framework provided the highest AUC of 0.94 at 10 degrees. field of imaging and 0.91 at 15 degrees. field of imaging compared to the TCA parameters with an AUC of 0.86 and 0.88, respectively. The proposed POD framework captures the instrument measurement variability and inherent structure variability and shows promise for improving our ability to detect glaucomatous change over time in glaucoma management.