882 resultados para Recursive functions.
Resumo:
Caption title.
Resumo:
This article shows a general way to implement recursive functions calculation by linear tail recursion. It emphasizes the use of tail recursion to perform computations efficiently.
Resumo:
In this paper we describe our system for automatically extracting "correct" programs from proofs using a development of the Curry-Howard process. Although program extraction has been developed by many authors, our system has a number of novel features designed to make it very easy to use and as close as possible to ordinary mathematical terminology and practice. These features include 1. the use of Henkin's technique to reduce higher-order logic to many-sorted (first-order) logic; 2. the free use of new rules for induction subject to certain conditions; 3. the extensive use of previously programmed (total, recursive) functions; 4. the use of templates to make the reasoning much closer to normal mathematical proofs and 5. a conceptual distinction between the computational type theory (for representing programs)and the logical type theory (for reasoning about programs). As an example of our system we give a constructive proof of the well known theorem that every graph of even parity, which is non-trivial in the sense that it does not consist of isolated vertices, has a cycle. Given such a graph as input, the extracted program produces a cycle as promised.
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.
Resumo:
This paper presents an approach to the belief system based on a computational framework in three levels: first, the logic level with the definition of binary local rules, second, the arithmetic level with the definition of recursive functions and finally the behavioural level with the definition of a recursive construction pattern. Social communication is achieved when different beliefs are expressed, modified, propagated and shared through social nets. This approach is useful to mimic the belief system because the defined functions provide different ways to process the same incoming information as well as a means to propagate it. Our model also provides a means to cross different beliefs so, any incoming information can be processed many times by the same or different functions as it occurs is social nets.
Resumo:
In this article we present a model of organization of a belief system based on a set of binary recursive functions that characterize the dynamic context that modifies the beliefs. The initial beliefs are modeled by a set of two-bit words that grow, update, and generate other beliefs as the different experiences of the dynamic context appear. Reason is presented as an emergent effect of the experience on the beliefs. The system presents a layered structure that allows a functional organization of the belief system. Our approach seems suitable to model different ways of thinking and to apply to different realistic scenarios such as ideologies.
Resumo:
"Research supported in part under NSF grant MCS 77-22830."
Resumo:
Bibliography: p. 120-123.
Resumo:
Pavel Azalov - Recursion is a powerful technique for producing simple algorithms. It is a main topics in almost every introductory programming course. However, educators often refer to difficulties in learning recursion, and suggest methods for teaching recursion. This paper offers a possible solutions to the problem by (1) expressing the recursive definitions through base operations, which have been predefined as a set of base functions and (2) practising recursion by solving sequences of problems. The base operations are specific for each sequence of problems, resulting in a smooth transitions from recursive definitions to recursive functions. Base functions hide the particularities of the concrete programming language and allows the students to focus solely on the formulation of recursive definitions.
Resumo:
In functional programming, fold is a standard operator that encapsulates a simple pattern of recursion for processing lists. This article is a tutorial on two key aspects of the fold operator for lists. First of all, we emphasize the use of the universal property of fold both as a proof principle that avoids the need for inductive proofs, and as a definition principle that guides the transformation of recursive functions into definitions using fold. Secondly, we show that even though the pattern of recursion encapsulated by fold is simple, in a language with tuples and functions as first-class values the fold operator has greater expressive power than might first be expected.
Resumo:
In this paper we present a technique for visualising hierarchical and symmetric, multimodal fitness functions that have been investigated in the evolutionary computation literature. The focus of this technique is on landscapes in moderate-dimensional, binary spaces (i.e., fitness functions defined over {0, 1}(n), for n less than or equal to 16). The visualisation approach involves an unfolding of the hyperspace into a two-dimensional graph, whose layout represents the topology of the space using a recursive relationship, and whose shading defines the shape of the cost surface defined on the space. Using this technique we present case-study explorations of three fitness functions: royal road, hierarchical-if-and-only-if (H-IFF), and hierarchically decomposable functions (HDF). The visualisation approach provides an insight into the properties of these functions, particularly with respect to the size and shape of the basins of attraction around each of the local optima.