996 resultados para Rectal Gland-function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the European lesser-spotted dogfish Scyliorhinus canicula, rectal gland mass in mg (M-Rg) followed the allometric relationship: M-Rg = 1.15 M-0.68, where M is body mass (g). The concept of allometric scaling is an important consideration in studies investigating the function Of osmoregulatory organs. (C) 2003 the Fisheries Society of the British Isles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temporal organization of mammals presents a daily adjustment to the environmental light/dark cycle. The environmental light detected by the retina adjusts the central clock in the suprachiasmatic nuclei, which innervate the pineal gland through a polysynaptic pathway. During the night, this gland produces and releases the nocturnal hormone melatonin, which circulates throughout the whole body and adjusts several bodily functions according to the existence and duration of darkness. We have previously shown that during the time frame of an inflammatory response, pro-inflammatory cytokines, such as tumor necrosis factor-a, inhibit while anti-inflammatory mediators, such as glucocorticoids, enhance the synthesis of melatonin, interfering in the daily adjustment of the light/dark cycle. Therefore, injury disconnects the organism from environmental cycling, while recovery restores the light/dark information to the whole organism. Here, we extend these observations by evaluating the effect of a mild restraint stress, which did not induce macroscopic gastric lesions. After 2 h of restraint, there was an increase in circulating corticosterone, indicating activation of the hypothalamus-pituitary-adrenal (HPA) axis. In parallel, an increase in melatonin production was observed. Taking into account the data obtained with models of inflammation and stress, we reinforce the hypothesis that the activity of the pineal gland is modulated by the state of the immune system and the HPA axis, implicating the darkness hormone melatonin as a modulator of defense responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osmoregulatory mechanisms in holocephalan fishes are poorly understood except that these fish are known to conduct urea-based osmoregulation as in elasmobranchs. We, therefore, examined changes in plasma parameters of elephant fish Callorhinchus milii, after gradual transfer to concentrated (120%) or diluted (80%) seawater (SW). In control fish, plasma Na and urea concentrations were about 300 mmol l–1 and 450 mmol l–1, respectively. These values were equivalent to those of sharks and rays, but the plasma urea concentration of elephant fish was considerably higher than that reported for chimaeras, another holocephalan. After transfer to 120% SW, plasma osmolality, urea and ion concentrations were increased, whereas transfer to 80% SW resulted in a fall in these parameters. The rises in ion concentrations were notable after transfer to 120% SW, whereas urea concentration decreased predominantly following transfer to 80% SW. In elephant fish, we could not find a discrete rectal gland. Instead, approximately 10 tubular structures were located in the wall of post-valvular intestine. Each tubular structure was composed of a putative salt-secreting component consisting of a single-layered columnar epithelium, which was stained with an anti-Na+,K+-ATPase serum. Furthermore, Na+,K+-ATPase activity in the tubular structures was significantly increased after acute transfer of fish to concentrated SW (115%). These results suggest that the tubular structures are a rectal gland equivalent, functioning as a salt-secreting organ. Since the rectal gland of elephant fish is well developed compared to that of Southern chimaera, the salt-secreting ability may be higher in elephant fish than chimaeras, which may account for the lower plasma NaCl concentration in elephant fish compared to other chimaeras. Since elephant fish have also attracted attention from a viewpoint of genome science, the availability of fish for physiological studies will make this species an excellent model in holocephalan fish group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fur seal (Arctocephalus spp. and Callorhinus spp., members of the pinniped family) is a mammal with the unusual capability to modulate its lactation cycle by turning milk production on and off without the typical mammalian regression and involution of the mammary gland. Lactation has evolved from constraints arising from the spatial and temporal separation of infant nursing and maternal foraging as the mother gives birth and feeds the pup on land while acquisition of nutrients for milk production occurs at sea. The lactation cycle begins with the female fur seal undergoing a perinatal fast of approximately 1 wk, after which time she departs the breeding colony to forage at sea. For the remainder of the long lactation period (116–540 days), the mother alternates between short periods ashore suckling the young with longer periods of up to 4 wk of foraging at sea. Milk production continues while foraging at sea, but at less than 20% the rate of production on land. Fur seals produce one of the richest milk reported, with a very high lipid content contributing up to 85% of total energy. This feature serves as an adaptation to the young's need to produce an insulating blubber layer against heat loss and to serve as an energy store when the mother is away foraging at sea. This atypical pattern of lactation means mothers have long periods with no suckling stimulus and can transfer high-energy milk rapidly while on land to minimize time away from foraging grounds. The absence of suckling stimulus and milk removal during foraging does not result in the onset of involution with associated apoptosis of mammary secretory cells and a subsequent progressive breakdown of the cellular structure of the mammary gland. The mechanisms controlling lactation in the fur seal mammary gland have been investigated using molecular and cellular techniques. These findings have shed light on the processes by which the unique features of lactation in the fur seal are regulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies using the mouse showed an inverse correlation between the Caveolin 1 gene expression and lactation, and this was regulated by prolactin. However, current study using mammary explants from pregnant mice showed that while insulin (I), cortisol (F) and prolactin (P) resulted in maximum induction of the β-casein gene, FP and IFP resulted in the downregulation of Caveolin 1. Additionally, IF, FP and IFP resulted in the downregulation of Caveolin 2. Immunohistochemistry confirmed localisation of Caveolin 1 specific to myoepithelial cells and adipocytes. Comparative studies with the tammar wallaby showed Caveolin 1 and 2 had 70-80% homology with the mouse proteins. However, in contrast to the mouse, Caveolin 1 and 2 genes showed a significantly increased level of expression in the mammary gland during lactation. The regulation of tammar Caveolin 1 and 2 gene expression was examined in mammary explants from pregnant tammars, and no significant difference was observed either in the absence or in the presence of IFP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24%o SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1parts per thousand rise in salinity. Between 24%o and 33parts per thousand, plasma osmolarity increased by 33% or 4.7% per 1 parts per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28parts per thousand and 33parts per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10parts per thousand, 11-20parts per thousand and 21-33parts per thousand. A comparison between C leucas captured in FW and estuarine environments (20-28%o) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C leucas moving between FW and SW, as well as the ecological implications of these data are discussed. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the landmark contributions of Homer Smith and co-workers in the 1930s there has been a considerable advance in our knowledge regarding the osmoregulatory strategy of elasmobranch fish. Smith recognised that urea was retained in the body fluids as part of the 'osmoregulatory ballast' of elasmobranch fish so that body fluid osmolality is raised to a level that is iso- or slightly hyper-osmotic to that of the surrounding medium. From studies at that time he also postulated that many marine dwelling elasmobranchs were not capable of adaptation to dilute environments. However, more recent investigations have demonstrated that, at least in some species, this may not be the case. Gradual acclimation of marine dwelling elasmobranchs to varying environmental salinities under laboratory conditions has demonstrated that these fish do have the capacity to acclimate to changes in salinity through independent regulation of Na+, Cl- and urea levels. This suggests that many of the presumed stenohaline marine elasmobranchs could in fact be described as partially euryhaline. The contributions of Thomas Thorson in the 1970s demonstrated the osmoregulatory strategy of a fully euryhaline elasmobranch, the bull shark, Carcharhinus leucas, and more recent investigations have examined the mechanisms behind this strategy in the euryhaline elasmobranch, Dasyatis sabina. Both partially euryhaline and fully euryhaline species utilise the same physiological processes to control urea, Na+ and Cl- levels within the body fluids. The role of the gills, kidney, liver, rectal gland and drinking process is discussed in relation to the endocrine control of urea, Na+ and Cl- levels as elasmobranchs acclimate to different environmental salinities. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study has examined expression and circulating levels of C-type natriuretic peptide (CNP) in the euryhaline bull shark, Carcharhinus leucas. Complementary DNA and deduced amino acid sequence for CNP in C leucas were determined by RACE methods. Homology of CNP amino acid sequence in C. leucas was high both for proCNP and for mature CNP when compared with previously identified elasmobranch CNPs. Mature CNP sequence in C. leucas was identical to that in Triakis seyllia and Seyliorhinus canicula. Levels of expression of CNP mRNA were significantly decreased in the atrium but did not change in either the brain or ventricle following acclimation to a SW environment. However, circulating levels of CNP significantly increased from 86.0 +/- 7.9 fmol ml(-1) in FW to 144.9 +/- 19.5 fmol ml(-1) in SW. The results presented demonstrate that changes in environmental salinity influences both synthesis of CNP from the heart and also circulating levels in C. leucas. Potential stimulus for release and modes of action are discussed. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

 This thesis investigated the role of milk, extracellular matrix and mammary adipocytes in regulating mammary gland function during involution in mice and explored the use of an in vitro culture model, the mammosphere model system to study the same.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research presents a comparative study of enzymatic activity of the hypopharyngeal gland extracts from workers of Apis mellifera in three physiologic stages: newly emerged, nurse and forager workers, with the objective of contributing to the comprehension of the gland function. In order to determinate the enzymes present in the extracts, the Api Zym kit (Bio Merieux) was used to test the activity of 19 different enzymes. The enzymes found in larger amounts only in the hypopharyngeal glands from certain individuals were the following: in newly emerged workers, the N-acetyl-double down arrow-glucosaminidase that may be digesting the chitin of some food ingested by the bee; in forager workers, the acid phosphatase that is likely acting in authophagic processes, the a-glucosidase, in the processing of nectar into honey, and the double down arrow-glucosidases, in the pollen digestion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research presents a comparative study of enzymatic activity of the hypopharyngeal gland extracts from workers of Apis mellifera in three physiologic stages: newly emerged, nurse and forager workers, with the objective of contributing to the comprehension of the gland function. In order to determinate the enzymes present in the extracts, the Api Zym kit (Bio Mérieux) was used to test the activity of 19 different enzymes. The enzymes found in larger amounts only in the hypopharyngeal glands from certain individuals were the following: in newly emerged workers, the N-acetyl-down double arrow sign-glucosaminidase that may be digesting the chitin of some food ingested by the bee; in forager workers, the acid phosphatase that is likely acting in authophagic processes, the a-glucosidase, in the processing of nectar into honey, and the down double arrow sign-glucosidases, in the pollen digestion.