868 resultados para Recording and registration
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.
Resumo:
This paper describes the work being conducted in the baseline rail level crossing project, supported by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper discusses the limitations of near-miss data for analysis obtained using current level crossing occurrence reporting practices. The project is addressing these limitations through the development of a data collection and analysis system with an underlying level crossing accident causation model. An overview of the methodology and improved data recording process are described. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.
Resumo:
This work proposes answers to methodological and substantive questions related to convenience voting. The first analytical chapter surveys the various research designs that have been proposed within this literature, and concludes that the field benefits from using all in conjunction. The next chapter uses matching to identify the relationship between disability status and political participation, and considers whether any forms of convenience voting mediate in the relationship. The final two analytical chapters examine how online voter registration, one of the most recent policy innovations, affects participation and vote share in American elections. The concluding chapter summarizes the findings presented herein, and briefly discusses the natural extensions of this work.
Resumo:
We present a theoretical model in which the band-transport equations and the coupled-wave equations are considered to study the two thermal-fixing methods (simultaneous fixing and postfixing) in Fe:LiNbO3. We found that, in simultaneous fixing, the existing ionic-grating affects the writing of the electronic grating by reduction of the coupling gain, and the grating envelope of the fixed-index grating is quite uniform inside the photorefractive crystal in comparison with the method of postfixing. The resulting diffraction efficiency of the fixed-volume grating is dependent mainly on the initial intensity modulation of the two writing beams. A set of experiments is also presented. (C) 1998 Optical Society of America.
Resumo:
In this paper, we propose a novel three-dimensional imaging method by which the object is captured by a coded cameras array (CCA) and computationally reconstructed as a series of longitudinal layered surface images of the object. The distribution of cameras in array, named code pattern, is crucial for reconstructed images fidelity when the correlation decoding is used. We use DIRECT global optimization algorithm to design the code patterns that possess proper imaging property. We have conducted primary experiments to verify and test the performance of the proposed method with a simple discontinuous object and a small-scale CCA including nine cameras. After certain procedures such as capturing, photograph integrating, computational reconstructing and filtering, etc., we obtain reconstructed longitudinal layered surface images of the object with higher signal-to-noise ratio. The results of experiments show that the proposed method is feasible. It is a promising method to be used in fields such as remote sensing, machine vision, etc. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.
Resumo:
This paper presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transforms for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a real and challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2011 IEEE.
Resumo:
This chapter presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transformations for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a (real and) challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
R. Marti, R. Zwiggelaar, C.M.E. Rubin, 'Automatic point correspondence and registration based on linear structures', International Journal of Pattern Recognition and Artificial Intelligence 16 (3), 331-340 (2002)