834 resultados para Reconocimiento facial


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Doctorado en Filosofía con Especialidad en Psicología) UANL, 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo principal alrededor del cual se desenvuelve este proyecto es el desarrollo de un sistema de reconocimiento facial. Entre sus objetivos específicos se encuentran: realizar una primera aproximación sobre las técnicas de reconocimiento facial existentes en la actualidad, elegir una aplicación donde pueda ser útil el reconocimiento facial, diseñar y desarrollar un programa en MATLAB que lleve a cabo la función de reconocimiento facial, y evaluar el funcionamiento del sistema desarrollado. Este documento se encuentra dividido en cuatro partes: INTRODUCCIÓN, MARCO TEÓRICO, IMPLEMENTACIÓN, y RESULTADOS, CONCLUSIONES Y LÍNEAS FUTURAS. En la primera parte, se hace una introducción relativa a la actualidad del reconocimiento facial y se comenta brevemente sobre las técnicas existentes para desarrollar un sistema biométrico de este tipo. En ella se justifican también aquellas técnicas que acabaron formando parte de la implementación. En la segunda parte, el marco teórico, se explica la estructura general que tiene un sistema de reconocimiento biométrico, así como sus modos de funcionamiento, y las tasas de error utilizadas para evaluar y comparar su rendimiento. Así mismo, se lleva a cabo una descripción más profunda sobre los conceptos y métodos utilizados para efectuar la detección y reconocimiento facial en la tercera parte del proyecto. La tercera parte abarca una descripción detallada de la solución propuesta. En ella se explica el diseño, características y aplicación de la implementación; que trata de un programa elaborado en MATLAB con interfaz gráfica, y que utiliza cuatro sistemas de reconocimiento facial, basados cada uno en diferentes técnicas: Análisis por componentes principales, análisis lineal discriminante, wavelets de Gabor, y emparejamiento de grafos elásticos. El programa ofrece además la capacidad de crear y editar una propia base de datos con etiquetas, dándole aplicación directa sobre el tema que se trata. Se proponen además una serie de características con el objetivo de ampliar y mejorar las funcionalidades del programa diseñado. Dentro de dichas características destaca la propuesta de un modo de verificación híbrido aplicable a cualquier rama de la biometría y un programa de evaluación capaz de medir, graficar, y comparar las configuraciones de cada uno de los sistemas de reconocimiento implementados. Otra característica destacable es la herramienta programada para la creación de grafos personalizados y generación de modelos, aplicable a reconocimiento de objetos en general. En la cuarta y última parte, se presentan al principio los resultados obtenidos. En ellos se contemplan y analizan las comparaciones entre las distintas configuraciones de los sistemas de reconocimiento implementados para diferentes bases de datos (una de ellas formada con imágenes con condiciones de adquisición no controladas). También se miden las tasas de error del modo de verificación híbrido propuesto. Finalmente, se extraen conclusiones, y se proponen líneas futuras de investigación. ABSTRACT The main goal of this project is to develop a facial recognition system. To meet this end, it was necessary to accomplish a series of specific objectives, which were: researching on the existing face recognition technics nowadays, choosing an application where face recognition might be useful, design and develop a face recognition system using MATLAB, and measure the performance of the implemented system. This document is divided into four parts: INTRODUCTION, THEORTICAL FRAMEWORK, IMPLEMENTATION, and RESULTS, CONCLUSSIONS AND FUTURE RESEARCH STUDIES. In the first part, an introduction is made in relation to facial recognition nowadays, and the techniques used to develop a biometric system of this kind. Furthermore, the techniques chosen to be part of the implementation are justified. In the second part, the general structure and the two basic modes of a biometric system are explained. The error rates used to evaluate and compare the performance of a biometric system are explained as well. Moreover, a description of the concepts and methods used to detect and recognize faces in the third part is made. The design, characteristics, and applications of the systems put into practice are explained in the third part. The implementation consists in developing a program with graphical user interface made in MATLAB. This program uses four face recognition systems, each of them based on a different technique: Principal Component Analysis (PCA), Fisher’s Linear Discriminant (FLD), Gabor wavelets, and Elastic Graph Matching (EGM). In addition, with this implementation it is possible to create and edit one´s tagged database, giving it a direct application. Also, a group of characteristics are proposed to enhance the functionalities of the program designed. Among these characteristics, three of them should be emphasized in this summary: A proposal of an hybrid verification mode of a biometric system; and an evaluation program capable of measuring, plotting curves, and comparing different configurations of each implemented recognition system; and a tool programmed to create personalized graphs and models (tagged graph associated to an image of a person), which can be used generally in object recognition. In the fourth and last part of the project, the results of the comparisons between different configurations of the systems implemented are shown for three databases (One of them created with pictures taken under non-controlled environments). The error rates of the proposed hybrid verification mode are measured as well. Finally, conclusions are extracted and future research studies are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente proyecto trata sobre uno de los campos más problemáticos de la inteligencia artificial, el reconocimiento facial. Algo tan sencillo para las personas como es reconocer una cara conocida se traduce en complejos algoritmos y miles de datos procesados en cuestión de segundos. El proyecto comienza con un estudio del estado del arte de las diversas técnicas de reconocimiento facial, desde las más utilizadas y probadas como el PCA y el LDA, hasta técnicas experimentales que utilizan imágenes térmicas en lugar de las clásicas con luz visible. A continuación, se ha implementado una aplicación en lenguaje C++ que sea capaz de reconocer a personas almacenadas en su base de datos leyendo directamente imágenes desde una webcam. Para realizar la aplicación, se ha utilizado una de las librerías más extendidas en cuanto a procesado de imágenes y visión artificial, OpenCV. Como IDE se ha escogido Visual Studio 2010, que cuenta con una versión gratuita para estudiantes. La técnica escogida para implementar la aplicación es la del PCA ya que es una técnica básica en el reconocimiento facial, y además sirve de base para soluciones mucho más complejas. Se han estudiado los fundamentos matemáticos de la técnica para entender cómo procesa la información y en qué se datos se basa para realizar el reconocimiento. Por último, se ha implementado un algoritmo de testeo para poder conocer la fiabilidad de la aplicación con varias bases de datos de imágenes faciales. De esta forma, se puede comprobar los puntos fuertes y débiles del PCA. ABSTRACT. This project deals with one of the most problematic areas of artificial intelligence, facial recognition. Something so simple for human as to recognize a familiar face becomes into complex algorithms and thousands of data processed in seconds. The project begins with a study of the state of the art of various face recognition techniques, from the most used and tested as PCA and LDA, to experimental techniques that use thermal images instead of the classic visible light images. Next, an application has been implemented in C + + language that is able to recognize people stored in a database reading images directly from a webcam. To make the application, it has used one of the most outstretched libraries in terms of image processing and computer vision, OpenCV. Visual Studio 2010 has been chosen as the IDE, which has a free student version. The technique chosen to implement the software is the PCA because it is a basic technique in face recognition, and also provides a basis for more complex solutions. The mathematical foundations of the technique have been studied to understand how it processes the information and which data are used to do the recognition. Finally, an algorithm for testing has been implemented to know the reliability of the application with multiple databases of facial images. In this way, the strengths and weaknesses of the PCA can be checked.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actualmente la detección del rostro humano es un tema difícil debido a varios parámetros implicados. Llega a ser de interés cada vez mayor en diversos campos de aplicaciones como en la identificación personal, la interface hombre-máquina, etc. La mayoría de las imágenes del rostro contienen un fondo que se debe eliminar/discriminar para poder así detectar el rostro humano. Así, este proyecto trata el diseño y la implementación de un sistema de detección facial humana, como el primer paso en el proceso, dejando abierto el camino, para en un posible futuro, ampliar este proyecto al siguiente paso, que sería, el Reconocimiento Facial, tema que no trataremos aquí. En la literatura científica, uno de los trabajos más importantes de detección de rostros en tiempo real es el algoritmo de Viola and Jones, que ha sido tras su uso y con las librerías de Open CV, el algoritmo elegido para el desarrollo de este proyecto. A continuación explicaré un breve resumen sobre el funcionamiento de mi aplicación. Mi aplicación puede capturar video en tiempo real y reconocer el rostro que la Webcam captura frente al resto de objetos que se pueden visualizar a través de ella. Para saber que el rostro es detectado, éste es recuadrado en su totalidad y seguido si este mueve. A su vez, si el usuario lo desea, puede guardar la imagen que la cámara esté mostrando, pudiéndola almacenar en cualquier directorio del PC. Además, incluí la opción de poder detectar el rostro humano sobre una imagen fija, cualquiera que tengamos guardada en nuestro PC, siendo mostradas el número de caras detectadas y pudiendo visualizarlas sucesivamente cuantas veces queramos. Para todo ello como bien he mencionado antes, el algoritmo usado para la detección facial es el de Viola and Jones. Este algoritmo se basa en el escaneo de toda la superficie de la imagen en busca del rostro humano, para ello, primero la imagen se transforma a escala de grises y luego se analiza dicha imagen, mostrando como resultado el rostro encuadrado. ABSTRACT Currently the detection of human face is a difficult issue due to various parameters involved. Becomes of increasing interest in various fields of applications such as personal identification, the man-machine interface, etc. Most of the face images contain a fund to be removed / discriminate in order to detect the human face. Thus, this project is the design and implementation of a human face detection system, as the first step in the process, leaving the way open for a possible future, extend this project to the next step would be, Facial Recognition , a topic not covered here. In the literature, one of the most important face detection in real time is the algorithm of Viola and Jones, who has been after use with Open CV libraries, the algorithm chosen for the development of this project. I will explain a brief summary of the performance of my application. My application can capture video in real time and recognize the face that the Webcam Capture compared to other objects that can be viewed through it. To know that the face is detected, it is fully boxed and followed if this move. In turn, if the user may want to save the image that the camera is showing, could store in any directory on your PC. I also included the option to detect the human face on a still image, whatever we have stored in your PC, being shown the number of faces detected and can view them on more times. For all as well I mentioned before, the algorithm used for face detection is that of Viola and Jones. This algorithm is based on scanning the entire surface of the image for the human face, for this, first the image is converted to gray-scale and then analyzed the image, showing results in the face framed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La rápida evolución de tecnologías que mejoran la interacción con los ordenadores ha cambiado la forma de pensar de la sociedad actual. Una de las últimas alternativas se centra en el reconocimiento facial y de gestos, el cual ha dado muy buenos resultados, acercando ordenadores y humanos. El objetivo de este proyecto era desarrollar un prototipo que permita el reconocimiento de gestos mediante el dispositivo Kinect, el cual usa una de las tecnologías mencionadas anteriormente. Para la realización de este prototipo, fue necesario el estudio del funcionamiento de Kinect. Una vez realizado, el siguiente paso consistió en la búsqueda de librerías que facilitaran el reconocimiento de gestos, para compararlas y finalmente escoger una de ellas. Al ser una tecnología reciente, no existen demasiadas aplicaciones que utilicen Kinect y por lo tanto, la búsqueda de la librería era una parte fundamental del proyecto. Tras elegir la librería, se analizaron las características que debía tener el prototipo para realizar el diseño del mismo. Este diseño se realizó de forma iterativa y con numerosos cambios para otorgar al prototipo la mayor abstracción posible y una mayor orientación a objetos, para de esta manera, favorecer los posibles cambios que sean necesarios al ser una tecnología nueva y muy cambiante. Finalmente, el paso final fue la implementación del prototipo bajo el diseño propuesto, consiguiendo un prototipo funcional capaz de reconocer, almacenar, mostrar y definir diferentes gestos. Los resultados ofrecidos por Kinect son muy satisfactorios, con una gran precisión y eficiencia, demostrando el potencial de las nuevas tecnologías de interacción sin contacto, cuyo único defecto se encuentra en ser una tecnología poco madura y en evolución. ---------------------------------------------------------------------------------------------------------- The fast development of technologies that enhance interaction with computers has changed the mindset of the society. One of the latest alternatives focuses on face and gesture recognition, which has been very successful, bringing closer computers and humans. The purpose of this project was to develop a gesture recognition prototype with the Kinect device, which uses one of the technologies mentioned above. For the realization of this prototype, it was necessary to study how Kinect works. Once done, the next step was to search for libraries to facilitate the gesture recognition, to compare them and finally choose one of them. Because it is a recent technology, there are not many applications that use Kinect and therefore, the library search was an essential part of the project. After selecting the library, the characteristics that the prototype should have were analyzed for the design. This design was performed iteratively with numerous changes to give the prototype abstraction and object orientation, because as a new technology, it changes fast. Therefore, with this design it would be easier to deal with possible changes. Finally, the final step was the implementation of the prototype under the proposed design, getting a functional prototype able to recognize, store, display and define different gestures. The results offered by Kinect are very satisfactory, with high accuracy and efficiency, demonstrating the potential of the new interaction technologies without contact, whose only fault is to be a little mature technology and evolving.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La segmentación de imágenes es un campo importante de la visión computacional y una de las áreas de investigación más activas, con aplicaciones en comprensión de imágenes, detección de objetos, reconocimiento facial, vigilancia de vídeo o procesamiento de imagen médica. La segmentación de imágenes es un problema difícil en general, pero especialmente en entornos científicos y biomédicos, donde las técnicas de adquisición imagen proporcionan imágenes ruidosas. Además, en muchos de estos casos se necesita una precisión casi perfecta. En esta tesis, revisamos y comparamos primero algunas de las técnicas ampliamente usadas para la segmentación de imágenes médicas. Estas técnicas usan clasificadores a nivel de pixel e introducen regularización sobre pares de píxeles que es normalmente insuficiente. Estudiamos las dificultades que presentan para capturar la información de alto nivel sobre los objetos a segmentar. Esta deficiencia da lugar a detecciones erróneas, bordes irregulares, configuraciones con topología errónea y formas inválidas. Para solucionar estos problemas, proponemos un nuevo método de regularización de alto nivel que aprende información topológica y de forma a partir de los datos de entrenamiento de una forma no paramétrica usando potenciales de orden superior. Los potenciales de orden superior se están popularizando en visión por computador, pero la representación exacta de un potencial de orden superior definido sobre muchas variables es computacionalmente inviable. Usamos una representación compacta de los potenciales basada en un conjunto finito de patrones aprendidos de los datos de entrenamiento que, a su vez, depende de las observaciones. Gracias a esta representación, los potenciales de orden superior pueden ser convertidos a potenciales de orden 2 con algunas variables auxiliares añadidas. Experimentos con imágenes reales y sintéticas confirman que nuestro modelo soluciona los errores de aproximaciones más débiles. Incluso con una regularización de alto nivel, una precisión exacta es inalcanzable, y se requeire de edición manual de los resultados de la segmentación automática. La edición manual es tediosa y pesada, y cualquier herramienta de ayuda es muy apreciada. Estas herramientas necesitan ser precisas, pero también lo suficientemente rápidas para ser usadas de forma interactiva. Los contornos activos son una buena solución: son buenos para detecciones precisas de fronteras y, en lugar de buscar una solución global, proporcionan un ajuste fino a resultados que ya existían previamente. Sin embargo, requieren una representación implícita que les permita trabajar con cambios topológicos del contorno, y esto da lugar a ecuaciones en derivadas parciales (EDP) que son costosas de resolver computacionalmente y pueden presentar problemas de estabilidad numérica. Presentamos una aproximación morfológica a la evolución de contornos basada en un nuevo operador morfológico de curvatura que es válido para superficies de cualquier dimensión. Aproximamos la solución numérica de la EDP de la evolución de contorno mediante la aplicación sucesiva de un conjunto de operadores morfológicos aplicados sobre una función de conjuntos de nivel. Estos operadores son muy rápidos, no sufren de problemas de estabilidad numérica y no degradan la función de los conjuntos de nivel, de modo que no hay necesidad de reinicializarlo. Además, su implementación es mucho más sencilla que la de las EDP, ya que no requieren usar sofisticados algoritmos numéricos. Desde un punto de vista teórico, profundizamos en las conexiones entre operadores morfológicos y diferenciales, e introducimos nuevos resultados en este área. Validamos nuestra aproximación proporcionando una implementación morfológica de los contornos geodésicos activos, los contornos activos sin bordes, y los turbopíxeles. En los experimentos realizados, las implementaciones morfológicas convergen a soluciones equivalentes a aquéllas logradas mediante soluciones numéricas tradicionales, pero con ganancias significativas en simplicidad, velocidad y estabilidad. ABSTRACT Image segmentation is an important field in computer vision and one of its most active research areas, with applications in image understanding, object detection, face recognition, video surveillance or medical image processing. Image segmentation is a challenging problem in general, but especially in the biological and medical image fields, where the imaging techniques usually produce cluttered and noisy images and near-perfect accuracy is required in many cases. In this thesis we first review and compare some standard techniques widely used for medical image segmentation. These techniques use pixel-wise classifiers and introduce weak pairwise regularization which is insufficient in many cases. We study their difficulties to capture high-level structural information about the objects to segment. This deficiency leads to many erroneous detections, ragged boundaries, incorrect topological configurations and wrong shapes. To deal with these problems, we propose a new regularization method that learns shape and topological information from training data in a nonparametric way using high-order potentials. High-order potentials are becoming increasingly popular in computer vision. However, the exact representation of a general higher order potential defined over many variables is computationally infeasible. We use a compact representation of the potentials based on a finite set of patterns learned fromtraining data that, in turn, depends on the observations. Thanks to this representation, high-order potentials can be converted into pairwise potentials with some added auxiliary variables and minimized with tree-reweighted message passing (TRW) and belief propagation (BP) techniques. Both synthetic and real experiments confirm that our model fixes the errors of weaker approaches. Even with high-level regularization, perfect accuracy is still unattainable, and human editing of the segmentation results is necessary. The manual edition is tedious and cumbersome, and tools that assist the user are greatly appreciated. These tools need to be precise, but also fast enough to be used in real-time. Active contours are a good solution: they are good for precise boundary detection and, instead of finding a global solution, they provide a fine tuning to previously existing results. However, they require an implicit representation to deal with topological changes of the contour, and this leads to PDEs that are computationally costly to solve and may present numerical stability issues. We present a morphological approach to contour evolution based on a new curvature morphological operator valid for surfaces of any dimension. We approximate the numerical solution of the contour evolution PDE by the successive application of a set of morphological operators defined on a binary level-set. These operators are very fast, do not suffer numerical stability issues, and do not degrade the level set function, so there is no need to reinitialize it. Moreover, their implementation is much easier than their PDE counterpart, since they do not require the use of sophisticated numerical algorithms. From a theoretical point of view, we delve into the connections between differential andmorphological operators, and introduce novel results in this area. We validate the approach providing amorphological implementation of the geodesic active contours, the active contours without borders, and turbopixels. In the experiments conducted, the morphological implementations converge to solutions equivalent to those achieved by traditional numerical solutions, but with significant gains in simplicity, speed, and stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo general de este trabajo es el correcto funcionamiento de un sistema de reconocimiento facial compuesto de varios módulos, implementados en distintos lenguajes. Uno de dichos módulos está escrito en Python y se encargarí de determinar el género del rostro o rostros que aparecen en una imagen o en un fotograma de una secuencia de vídeo. El otro módulo, escrito en C++, llevará a cabo el reconocimiento de cada una de las partes de la cara (ojos, nariz, boca) y la orientación hacia la que está posicionada (derecha, izquierda). La primera parte de esta memoria corresponde a la reimplementación de todas las partes de un analizador facial, que constituyen el primer módulo antes mencionado. Estas partes son un analizador, compuesto a su vez por un reconocedor (Tracker) y un procesador (Processor), y una clase visor para poder visualizar los resultados. Por un lado, el reconocedor o "Tracker.es el encargado de encontrar la cara y sus partes, que serán pasadas al procesador o Processor, que analizará la cara obtenida por el reconocedor y determinará su género. Este módulo estaba dise~nado completamente en C y OpenCV 1.0, y ha sido reescrito en Python y OpenCV 2.4. Y en la segunda parte, se explica cómo realizar la comunicación entre el primer módulo escrito en Python y el segundo escrito en C++. Además, se analizarán diferentes herramientas para poder ejecutar código C++ desde programas Python. Dichas herramientas son PyBindGen, Cython y Boost. Dependiendo de las necesidades del programador se contará cuál de ellas es más conveniente utilizar en cada caso. Por último, en el apartado de resultados se puede observar el funcionamiento del sistema con la integración de los dos módulos, y cómo se muestran por pantalla los puntos de interés, el género y la orientación del rostro utilizando imágenes tomadas con una cámara web.---ABSTRACT---The main objective of this document is the proper functioning of a facial recognition system composed of two modules, implemented in diferent languages. One of these modules is written in Python, and his purpose is determining the gender of the face or faces in an image or a frame of a video sequence. The other module is written in C ++ and it will perform the recognition of each of the parts of the face (eyes, nose , mouth), and the head pose (right, left).The first part of this document corresponds to the reimplementacion of all components of a facial analyzer , which constitute the first module that I mentioned before. These parts are an analyzer , composed by a tracke) and a processor, and a viewer to display the results. The tracker function is to find and its parts, which will be passed to the processor, which will analyze the face obtained by the tracker. The processor will determine the face's gender. This module was completely written in C and OpenCV 1.0, and it has been rewritten in Python and OpenCV 2.4. And in the second part, it explains how to comunicate two modules, one of them written in Python and the other one written in C++. Furthermore, it talks about some tools to execute C++ code from Python scripts. The tools are PyBindGen, Cython and Boost. It will tell which one of those tools is better to use depend on the situation. Finally, in the results section it is possible to see how the system works with the integration of the two modules, and how the points of interest, the gender an the head pose are displayed on the screen using images taken from a webcam.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La gestión de la calidad es un proceso imprescindible en cualquier empresa, especialmente en servicios. Este proceso lleva aparejado el consumo de recursos, y gestionarlos de forma óptima implica tomar decisiones sobre el muestreo de la opinión de usuarios y clientes. En este artículo se presenta el análisis de Generalizabilidad como una de las técnicas que pueden ayudar en la toma de decisiones sobre el muestreo en la opinión de usuarios y clientes. Se presentan dos estudios, uno de carácter cuantitativo y otro perteneciente a los diseños mixed methods. En el primer estudio participaron un total de 738 participantes, se utilizó la adaptación del Cuestionario de Evaluación de la Calidad Percibida en Servicios Deportivos (CECASDEP MEX v.1). En la primera muestra participaron 381 participantes de ambos géneros, 189 hombres (49.6%) y 182 mujeres (47.8%), valores perdidos 10 (2.6%). El rango de edad está entre 14 y 69 años (M= 28.26), y todos son usuarios activos de las entidades deportivas universitarias. En la segunda muestra utilizada participaron 357 participantes de ambos géneros, (156 hombres (43.7%) y 195 mujeres (54.6%), valores perdidos 6 (1.7%)). El rango de edad está entre 14 y 61 años (M= 24.76), y todos son usuarios activos de las entidades deportivas universitarias. En el segundo estudio se integraron de forma complementaria datos cualitativos y cuantitativos, siguiendo los planteamientos de los mixed methods. La recogida de los datos cualitativos se ha realizado mediante entrevistas individuales y los cuantitativos a través del análisis de reconocimiento facial de emociones. La muestra la formaron 29 participantes (n=29), niños/as con edades comprendidas entre los 5 a 12 años. El muestreo fue de carácter aleatorio y estratificado con asignación proporcional. En ambos estudios se realizó una optimización de los diseños de medida a través de un análisis de generalizabilidad utilizando el programa SAGT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological validity of static and intense facial expressions in emotional recognition has been questioned. Recent studies have recommended the use of facial stimuli more compatible to the natural conditions of social interaction, which involves motion and variations in emotional intensity. In this study, we compared the recognition of static and dynamic facial expressions of happiness, fear, anger and sadness, presented in four emotional intensities (25 %, 50 %, 75 % and 100 %). Twenty volunteers (9 women and 11 men), aged between 19 and 31 years, took part in the study. The experiment consisted of two sessions in which participants had to identify the emotion of static (photographs) and dynamic (videos) displays of facial expressions on the computer screen. The mean accuracy was submitted to an Anova for repeated measures of model: 2 sexes x [2 conditions x 4 expressions x 4 intensities]. We observed an advantage for the recognition of dynamic expressions of happiness and fear compared to the static stimuli (p < .05). Analysis of interactions showed that expressions with intensity of 25 % were better recognized in the dynamic condition (p < .05). The addition of motion contributes to improve recognition especially in male participants (p < .05). We concluded that the effect of the motion varies as a function of the type of emotion, intensity of the expression and sex of the participant. These results support the hypothesis that dynamic stimuli have more ecological validity and are more appropriate to the research with emotions.