987 resultados para Recirculating aquaculture system
Resumo:
BACKGROUND: A packed bed bioreactor (PBBR) activated with an indigenous nitrifying bacterial consortia was developed and commercialized for rapid establishment of nitrification in brackish water and marine hatchery systems in the tropics. The present study evaluated nitrification in PBBR integrated into a Penaeus monodon recirculating maturation system under different substrate concentrations and flow rates. RESULTS:Instantnitrificationwasobservedafter integration ofPBBRinto thematuration system.TANandNO2-Nconcentrations were always maintained below0.5 mg L−1 during operation. The TANandNO2-N removalwas significant (P < 0.001) in all the six reactor compartments of the PBBR having the substrates at initial concentrations of 2, 5 and 10 mg L−1. The average volumetric TAN removal rates increased with flow rates from 43.51 (250 L h−1) to 130.44 (2500 L h−1) gTAN m−3 day−1 (P < 0.05). FISH analysis of the biofilms after 70 days of operation gave positive results with probes NSO 190 ((β ammonia oxidizers), NsV 443 (Nitrosospira spp.) NEU (halophilic Nitrosomonas), Ntspa 712 (Phylum Nitrospira) indicating stability of the consortia. CONCLUSION: The PBBR integrated into the P. monodon maturation system exhibited significant nitrification upon operation for 70 days as well as at different substrate concentrations and flow rates. This system can easily be integrated into marine and brackish water aquaculture systems, to establish instantaneous nitrification
Resumo:
Two distinct nitrifying bacterial consortia, namely an ammonia oxidizing non-penaeid culture (AMO NPCU-1) and an ammonia oxidizing penaeid culture (AMOPCU-1), have been mass produced in a nitrifying bacterial consortia production unit (NBCPU). The consortia, maintained at 4 C were activated and cultured in a 2 l fermentor initially. At this stage the net biomass (0.105 and 0.112 g/l), maximum specific growth rate (0.112 and 0.105/h) and yield coefficients (1.315 and 2.08) were calculated respectively, for AMONPCU-1 and AMOPCU-1 on attaining stationary growth phase. Subsequently on mass production in a 200 l NBCPU under optimized culture conditions, the total amounts of NH4 ?–N removed by AMONPCU-1 and AMOPCU-1 were 1.948 and 1.242 g/l within 160 and 270 days, respectively. Total alkalinity reduction of 11.7–14.4 and 7.5–9.1 g/l were observed which led to the consumption of 78 and 62 g Na2CO3. The yield coefficient and biomass of AMONPCU-1 were 0.67 and 125.3 g/l and those of AMOPCU-1 were 1.23 and 165 g/l. The higher yield coefficient and growth rate of AMOPCU-1 suggest better energy conversion efficiency and higher CO2 fixation potential. Both of the consortia were dominated by Nitrosomonas-like organisms. The consortia may find application in the establishment of nitrification within marine and brackish water culture systems.
Coastal aquaculture system in the Philippines: social equity, property rights and disregarded duties
Resumo:
The hydrodynamic characterization and the performance evaluation of an aerobic three phase fluidized bed reactor in wastewater fish culture treatment are presented in this report. The objective of this study was to evaluate the organic matter, nitrogen and phosphorous removal efficiency in a physical and biological wastewater treatment system of an intensive Nile Tilapia laboratory production with recirculation. The treatment system comprised of a conventional sedimentation basin operated at a hydraulic detention time HDT of 2.94 h and an aerobic three phase airlift fluidized bed reactor AAFBR operated at an 11.9 min HDT. Granular activated carbon was used as support media with density of 1.64 g/cm(3) and effective size of 0.34 mm in an 80 g/L constant concentration. Mean removal efficiencies of BOD, COD, phosphorous, total ammonia nitrogen and total nitrogen were 47%, 77%, 38%, 27% and 24%, respectively. The evaluated system proved an effective alternative for water reuse in the recirculation system capable of maintaining water quality characteristics within the recommended values for fish farming and met the Brazilian standards for final effluent discharges with exception of phosphorous values. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1 ), tryptose phosphate broth (2.95 g l 1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 lgml 1 chloramphenicol, 100 lgml 1 streptomycin and 100 IU ml 1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-20-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals
Resumo:
To compare the removal efficiency of solids, turbidity and apparent color between a conventional and a column settling tanks in a recirculating aquaculture system (RAS) for tilapia farming. Materials and methods. Tilapia with a stocking density between 30 and 33 kg/m3 were cultured in a RAS consisting of a water level control box, PVC piping system, three plastic tanks for culture, conventional horizontal flow settling tank (Con.ST), column vertical flow settling tank (Col.ST), three phase fluidized bed reactor, oxygen transfer reactor, air compressor, air blower, centrifugal pump. The Con.ST operated at a volume of 1.4 m3 and hydraulic retention time (HRT) of 2.94 h; and was drained weekly for washing and sludge collection, representing a 55%discharge of system water volume. The Col.ST operated with a volume of 0.30 m3 and HRT of 0.553 h. Three daily partial draining operations were executed, representing a discharge of 50% of the system volume. Results. The mean solids removal efficiencies were: 34.01 and 44.44%for total solids; 64.45 and 71.71% for suspended solids; 21.10 and 45.65% volatile solids; 65.51% and 62.79% for turbidity; and 56.37 and 50.91% for apparent color, respectively for Con.ST and Col.ST. Conclusions. The two settling devices are useful on removal of the studied parameters and presented similar performance on turbidity and apparent color removal; however, the Col.ST was more efficient than Con.ST for solids removal, requires less space, less volume and requires less discharge water volume, displaying feasibility for its use on RAS.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Differences in culture duration, metamorphosis rate and the productivity in hatchery culture of M. rosenbergii using a closed system with natural and artificial brackish water were evaluated. Reuse of brackish water in more than one hatchery cycle was also evaluated. Natural and artificial brackish water constituted the two tested treatments, which were distributed in four independent recirculating systems (tank and respective biofilter). Four batches of cultures were conducted and the 2nd and 4th reused the water from the 1st and 3rd, respectively. Mean duration of the hatchery period was 28 d in natural brackish water and 31 d in artificial brackish water. The metamorphosis rate and the average productivity for the natural brackish water treatment were 74% and 60 postlarvae/ L. respectively, and values obtained with artificial brackish water were 55% and 44 postlarvae/L. The successful hatchery culture of M. rosenbergii in this specific artificial brackish water suggests its potential use in enterprises located far from the coast. Brackish water can be used in two consecutive cultures without a negative effect on productivity.
Resumo:
161 p.
Resumo:
The main objective of this thesis is to study the developing fields of aquaponics and its potential for aquaculture wastewater treatment and human urine treatment. Aquaponics is a food production system which combines fish farming (aquaculture) with soilless crop farming (hydroponics). In this thesis the concept of aquaponics and the underlying processes are explained. Research on aquaculture wastewater and human urine wastewater is reviewed and its potential application with aquaponic systems is studied. An overview of the different types of aquaponic systems and current research on the field is also presented. A case study was conducted in a farm in Askeröd, Sweden, which involved building two aquaponic systems (System 1 and System 2) and a human urine-based aquaponic system (System 3), with different degrees of component complexity and sizes. The design, building and monitoring of System 1, System 2 and System 3 was documented and described in detail. Four day experiments were conducted which tested the evolution in concentration of Total Ammonia Nitrogen (NH4+/NH3), Nitrite (NO2-), Nitrate (NO3-), Phosphate (PO43-), and Dissolved Oxygen (O2) after an initial nutrient input. The goal was to assess the concentrations of these parameters after four days and compare them with relevant literature examples in the aquaculture industry and in source-separated urine research. Neither of the two aquaponic systems (System 1 and System 2) displayed all of the parameter concentrations in the last day of testing below reference values found in literature. The best performing of the aquaponic systems was the more complex system (System 2) combining the hydroponic Nutrient Film Technique with a Deep Water Culture component, with a Total Ammonia Nitrogen concentration of 0,20 mg/L, a Nitrite concentration of 0,05 mg/L, a Nitrate concentration of 1,00-5,00 mg/L, a Phosphate concentration of <0,02 mg/L and a Dissolved Oxygen concentration of 8,00 mg/L. The human urine-based aquaponic system (System 3) underperformed in achieving the reference concentration values in literature for most parameters. The removal percentage between the higher recorded values after the input addition and the final day of testing was calculated for two literature examples of separated urine treatment and System 3. The system had a removal percentage of 75% for Total Ammonia Nitrogen, 98% for Nitrite, 25% for Nitrate and 50% for Phosphate. These percentages still underperformed literature examples in most of the tested parameters. The results gathered allowed to conclude that while aquaculture wastewater treatment and human urine treatment is possible with aquaponics systems, overall these did not perform as well as some examples found in recirculating aquaculture systems and source-separated urine treatment literature. However, better measuring techniques, longer testing periods and more research is recommended in this field in order to draw an improved representative conclusion.
Resumo:
The thesis aims to expose the advances achieved in the practices of captive breeding of the European eel (Anguilla anguilla). Aspects investigated concern both approaches livestock (breeding selection, response to hormonal stimulation, reproductive performance, incubation of eggs) and physiological aspects (endocrine plasma profiles of players), as well as engineering aspects. Studies conducted on various populations of wild eel have shown that the main determining factor in the selection of wild females destined to captive breeding must be the Silver Index which may determine the stage of pubertal development. The hormonal induction protocol adopted, with increasing doses of carp pituitary extract, it has proven useful to ovarian development, with a synchronization effect that is positively reflected on egg production. The studies on the effects of photoperiod show how the condition of total darkness can positively influence practices of reproductions in captivity. The effects of photoperiod were also investigated at the physiological level, observing the plasma levels of steroids ( E2, T) and thyroid hormones (T3 and T4) and the expression in the liver of vitellogenin (vtg1 and vtg2) and estradiol membrane receptor (ESR1). From the comparison between spontaneous deposition and insemination techniques through the stripping is inferred as the first ports to a better qualitative and quantitative yield in the production of eggs capable of being fertilized, also the presence of a percentage of oocytes completely transparent can be used to obtain eggs at a good rate of fertility. Finally, the design and implementation of a system for recirculating aquaculture suited to meet the needs of species-specific eel showed how to improve the reproductive results, it would be preferable to adopt low-flow and low density incubation.
Resumo:
Marine Recirculating Aquaculture Systems (RAS) produce great volume of wastewater, which may be reutilized/recirculated or reutilized after undergoing different treatment/remediation methods, or partly discharged into neighbour water-bodies (DWW). Phosphates, in particular, are usually accumulated at high concentrations in DWW, both because its monitoring is not compulsory for fish production since it is not a limiting parameter, and also because there is no specific treatment so far developed to remove them, especially in what concerns saltwater effluents. As such, this work addresses two main scientific questions. One of them regards the understanding of the actual (bio)remediation methods applied to effluents produced in marine RAS, by identifying their advantages, drawbacks and gaps concerning their exploitation in saltwater effluents. The second one is the development of a new, innovative and efficient method for the treatment of saltwater effluents that potentially fulfil the gaps identified in the conventional treatments. Thereby, the aims of this thesis are: (i) to revise the conventional treatments targeting major contaminants in marine RAS effluents, with a particular focus on the bioremediation approaches already conducted for phosphates; (ii) to characterize and evaluate the potential of oyster-shell waste collected in Ria de Aveiro as a bioremediation agent of phosphates spiked into artificial saltwater, over different influencing factors (e.g., oyster-shell pre-treatment through calcination, particle size, adsorbent concentration). Despite the use of oyster-shells for phosphorous (P) removal has already been applied in freshwater, its biosorptive potential for P in saltwater was never evaluated, as far as I am aware. The results herein generated showed that NOS is mainly composed by carbonates, which are almost completely converted into lime (CaO) after calcination (COS). Such pre-treatment allowed obtaining a more reactive material for P removal, since higher removal percentages and adsorption capacity was observed for COS. Smaller particle size fractions for both NOS and COS samples also increased P removal. Kinetic models showed that NOS adsorption followed, simultaneously, Elovich and Intraparticle Difusion kinetic models, suggesting that P removal is both a diffusional and chemically rate-controlled process. The percentage of P removal by COS was not controlled by Intraparticle Diffusion and the Elovich model was the kinetic model that best fitted phosphate removal. This work demonstrated that waste oyster-shells, either NOS or COS, could be used as an effective biosorbent for P removal from seawater. Thereby, this biomaterial can sustain a cost-effective and eco-friendly bioremediation strategy with potential application in marine RAS.
Resumo:
Vibrio are important during hatchery rearing. aquaculture phase and post-harvest quality of shrimps. Vibrio spp are of concern to shrimp farmers and hatchery operators because certain species can cause Vibriosis. Vibrio species are of concern to humans because certain species cause serious diseases.With the progress in aquaculture, intensive systems used for shrimp aquaculture create an artificial environment that increases bacterial growth. To maintain the productivity of such an intensive aquaculture, high inputs of fish protein have to be employed for feeding together with high levels of water exchange and the massive use of antibiotics/ probiotics / chemicals. It seems that the combination of these conditions favours the proliferation of vibrios and enhances their virulence and disease prevalence. The risk of a microbial infection is high, mainly at larval stages. The effect and severity are related to Vibrio species and dose, water, feed, shrimp quality and aquaculture management.Consumption of seafood can occasionally result in food-bome illnesses due to the proliferation of indigenous pathogens like Vibrio.Of the l2 pathogenic Vibrio species, 8 species are known to be directly food associated. Strict quality guidelines have been laid by the importing nations, for the food products that enter their markets. The microbiological quality requirement for export of frozen shrimp products is that V.cholerae, V.parahaemolyticus and V. vulnificus should be absent in 25g of the processed shrimp (Export Inspection Council of India, 1995). The mere presence of these pathogenic Vibrios is sufficient for the rejection of the exported product.The export rejections cause serious economic loss to the shrimp industry and might harm the brand image of the shrimp products from the countiy.There is a need for an independent study on the incidence of different pathogenic vibrios in shrimp aquaculture and investigate their biochemical characteristics to have a better understanding about the growth and survival of these organisms in the shrimp aquaculture niche. PCR based methods (conventional PCR, duplex PCR, multiplex-PCR and Real Time PCR) for the detection of the pathogenic Vibrios is important for rapid post-harvest quality assessment. Studies on the genetic heterogeneity among the specific pathogenic vibrio species isolated from shrimp aquaculture system provide; valuable information on the extent of genetic diversity of the pathogenic vibrios, the shrimp aquaculture system.So the present study was undertaken to study the incidence of pathogenic Vibrio spp. in Penaeus monodon shrimp hatcheries and aquaculture farms, to carry out biochemical investigations of the pathogenic Vibrio spp isolated from P. monodon hatchery and. aquaculture environments, to assess the effect of salt (NaCl) on the growth and enzymatic activities of pathogenic Vibrio spp., to study the effect of preservatives, and chemicals on the growth of pathogenic Vibrio spp. and to employ polymerase chain reaction (PCR) methods for the detection of pathogenic V ibrio spp.Samples of water (n=7) and post-larvae (n=7) were obtained from seven Penaeus monodon hatcheries and samples of water (n=5), sediment (n=5) and shrimp (n=5) were obtained from five P. monodon aquaculture farms located on the East Coast of lndia. The microbiological examination of water, sediment, post-larvae and shrimp samples was carried out employing standard methods and by using standard media.The higher bacterial loads were obtained in pond sediments which can be attributed to the accumulation of organic matter at the pond bottom which stimulated bacterial growth.Shrimp head. (4.78 x 105 +/- 3.0 x 104 cfu/g) had relatively higher bacterial load when compared to shrimp muscle 2.7 x 105 +/- 1.95 x 104 cfu/g). ln shrimp hatchery samples, the post-larvae (2.2 x 106 +/- 1.9 x 106 cfu/g) had higher bacterial load than water (5.6 x 103 +/- 3890 cfu/ml).The mean E.coli counts were higher in aquaculture pond sediment (204+/-13 cfu/g) and pond water (124+/-88 cfu/ml). Relatively lower Escherichia coli counts were obtained from shrimp samples (12+/-11 to 16+/-16.7 cfu/g). The presence of E.coli in aquaculture environment might have been from the source water. E.coli was not detected in hatchery waters and post-larvae.
Resumo:
The addition of commercial nitrifying bacterial products has resulted in significant improvement of nitrification efficiency in recirculating aquaculture systems (RAS). We developed two nitrifying bacterial consortia (NBC) from marine and brackish water as start up cultures for immobilizing commercialized nitrifying bioreactors for RAS. In the present study, the community compositions of the NBC were analyzed by universal 16S rRNA gene and bacterial amoA gene sequencing and fluorescence in situ hybridization (FISH). This study demonstrated that both the consortia involved autotrophic nitrifiers, denitrifiers as well as heterotrophs. Abundant taxa of the brackish water heterotrophic bacterial isolates were Paenibacillus and Beijerinckia spp. whereas in the marine consortia they were Flavobacterium, Cytophaga and Gramella species. The bacterial amoA clones were clustered together with high similarity to Nitrosomonas sp. and uncultured beta Proteobacteria. FISH analysis detected ammonia oxidizers belonging to b subclass of proteobacteria and Nitrosospira sp. in both the consortia, and Nitrosococcus mobilis lineage only in the brackish water consortium and the halophilic Nitrosomonas sp. only in the marine consortium. However, nitrite oxidizers, Nitrobacter sp. and phylum Nitrospira were detected in both the consortia. The metabolites from nitrifiers might have been used by heterotrophs as carbon and energy sources making the consortia a stable biofilm.
Resumo:
Understanding the behavioral activities of freshwater shrimp in captivity is of paramount importance for the appropriate management of the species. In Brazil, the shrimp Macrobrachium rosenbergii is currently the most widely used species in the freshwater shrimp culture due to its high potential for cultivation and good market acceptance. Thus, the present study aimed to describe and characterize the behavioral activities of M. rosenbergii in monosex and in mixed (male and female) (manuscript 1, 2 and 3) populations and the growth performance of this species in restrictive feeding conditions and in different feeding management (manuscript 4 and 5, respectively) . Juvenile and adult shrimps were collected from ponds of the Aquaculture Station - Unidade Especializada em Ciências Agrárias - Universidade Federal do Rio Grande do Norte (UFRN), Macaíba/RN and then transferred to the Laboratório de Estudos do Comportamento do Camarão LECC (Laboratory for Shrimp Behavioral Studies) of the Universidade Federal do Rio Grande do Norte (UFRN). For each treatment , eight aquaria of 250 L (50 cm x 50 cm x 100 cm) were used in a closed recirculating water system with artificial lighting, constant aeration , continuous filtration through a biochemical and biological filter (canister filter), and fine sand as substrate . The water quality was monitored daily. The lab consisted of two rooms with artificial lighting system , controlled by a timer with dark / light cycle of 12:12 h . In manuscript 1, the behavioral categories of the species were presented through an ethogram, which described 31 behaviors, subdivided into general and agonistic behaviors. Manuscript 2 compared the behavioral profile of shrimps in male and in female monosex and mixed populations over 24 hours in laboratory. In three types (mixed, male monosex and female monosex) of populations during the light and dark phases of the 24 hour cycle, the shrimps showed higher occurrence of cleaning behavior. Manuscript 3 examined the influence of the color of the shelter on the frequency of its use and behavioral activities of shrimp in mixed, in male monosex and in female monosex populations over 24 hours. We observed that the shrimp M. rosenbergii burrow more frequently during the light phase in male monosex and mixed populations; they also tend to choose the black shelters. Female monosex populations tend to use red and orange shelters. In manuscript 4, we evaluated in laboratory the behavioral activities and growth performance of juvenile shrimps under food restriction. We observed that a mild food restriction may be used since there is no loss concerning the growth of the animals; feeding management on alternate days , compared to daily management can be financially productive both reducing labor costs and reducing the amount of feed used . Manuscript 5 evaluated the behavior of shrimps in monosex and in mixed populations, as well as the latency of reach the food according to feed offer (tray or food dispersal) . Our results indicate that animals adjust to both types of feed offer food dispersal as much as tray, but they spend more time to reach the feed when it is offered in trays (feeders). Comparing culture types (mixed, male monosex and female monosex), the latency to reach the food was lower for female monosex population. The data obtained in this study demonstrate the importance of identifying different pressures and environmental stimuli on the behavioral responses of this species. This knowledge would support management improvement to optimize the levels of animals‟ welfare, resulting in a better zootecnical performance