1000 resultados para Recharge area
Resumo:
The region of Ribeirão Preto City located in São Paulo State, southeastern Brazil, is an important sugarcane, soybean and corn producing area. This region is also an important recharge area (Espraiado) for groundwater of the Guarany aquifer, a water supply source for the city and region. It has an intercontinental extension that comprises areas of eight Brazilian states, as well as significant portions of other South American countries like Argentina, Uruguay, and Paraguay, with a total area of approximately 1,200,000 Km2. Due to the high permeability of some soils present in this region, the high mobility of the herbicides and fertilizers applied, and being a recharge area, it is important to investigate the potential transport of applied fertilizers to underlying aquifer. The cultivation sugar cane in this area demands the frequent use of nitrogen as fertilizer. This research was conducted to characterize the potential contamination of groundwater with nitrogen in the recharge area of groundwater. Seven groundwater sample points were selected in the Espraiado stream watershed, during the years of 2005 and 2006. Samples were collected during the months of March, July, and December of each year. Three replications were collected at each site. Groundwater was also collected during the same months from county groundwater wells located throughout the city. The following six wells were studied: Central, Palmares, Portinari, Recreio Internacional, São Sebastião, and São José. Nitrate water samples were analyzed by Cadmium Reduction Method. No significant amount of nitrate was found in the recharge, agricultural, area. However, nitrate levels were detected at concentrations higher than the Maximum Concentration Level (MCL) of 10mg/L in downtown, urban, well located away from agricultural sites with no history of fertilizer or nitrogen application.
Resumo:
2008
Resumo:
Springs are outcrops of aquifers surface, and the water cycle in this environment pass through the recharge, generally defined as the amount of water added to the aquifer, which may occur locally from rainwater infiltration. This study uses the Water Table Fluctuation (WTF) method to estimate the direct recharge and a groundwater balance to estimate the deep recharge on unconfined aquifers. The WTF method employs data of the aquifer water levels and its specific yield to estimate the direct recharge. The groundwater balance considers the direct recharge estimated by the WTF method, as the water input in the system and outputs as the base flow and deep recharge. The recharge was estimated at four areas at the watershed of Alto Rio Grande city, Minas Gerais (MG) state, in Brazil. The direct recharge estimate was 121.11; 64.62; 83.99; 152.46 (mm/year) for the L1, L2, M1 and M2 areas. The effect of the presence of forest in the recharge area can prevail over slope of relief, allowing more direct recharge, even in sources with steeper relief. The runoff from the springs in the study period exceeded the direct recharge, indicating a situation in which the saturated zone feeds the vadose zone. The annual flow was above the direct recharge pointing a situation of over exploitation of the aquifer, a non sustainable situation. The specific yield of the aquifers could also have been underestimated.
Resumo:
This investigation reports the results of a study realized in an area related to the development of sand mining activities, which belongs to Sibelco Mineração Ltd. The site is located around Analândia municipality, nearly in the center of São Paulo State, Brazil. Hydrochemical analyses of groundwater were realized under different periods of time, with the aim of evaluating the possibility of release of several constituents to the liquid phase, which may be a source of pollution of the surface hydrological resources and of the deeper Guarani aquifer. This is because the site is located at the recharge area of Guarani aquifer and some tributaries from Corumbataí river may also be suffering contamination, implying on the impoverishment of the water quality that are very important resources in the region, as they are extensively used for drinking purposes, among others.© 2011 WIT Press.
Resumo:
Contemporary society creates risks of all kinds, changing the meaning of this term. Although it may be associated with natural hazards, it gradually assumes a stronger relation with human actions, especially due to the use of technology. The use of land for agricultural and urban activities creates the possibility of contamination in the recharge area of the Guarani aquifer in the municipality of Ribeirao Preto, state of Sao Paulo, Brazil. This city is one of the most important in the state with high economic development. Besides this, it is located in the recharge area of the main reservoir of underground water of South Cone. This paper aims to discuss the management of groundwater use in Ribeirao Preto and reflects the risk that contamination and overexploitation might cause to the main city's water supply.
Resumo:
El objetivo principal de este proyecto es la caracterización de la microcuenca la Jabonera (Estelí, Nicaragua) enfatizando el agua como factor clave que conecta todos los elementos que interaccionan en la microcuenca y que, además delimita el área de estudio. El trabajo de campo ha consistido básicamente en la georeferenciación de los puntos de interés, la realización de encuestas a la población y la evaluación de las fuentes de agua y del agua del río mediante análisis fisicoquímicos. En el procesamiento de la información se ha elaborado cartografía temática mediante la herramienta SIG que ha servido de soporte para la interpretación de los resultados. Las características morfométricas y biofísicas favorecen que el agua precipitada se pierda rápidamente por escorrentía superficial con una tendencia moderada a crecidas e inundaciones. El agua infiltrada circula rápidamente por fracturas del material geológico con tiempos de tránsito cortos, y además, el área de recarga de los nacientes es local por lo que las fuentes son especialmente vulnerables a períodos de sequía y a la contaminación en su entorno cercano. El estudio de usos del suelo junto con la realización de análisis del agua ha permitido determinar que los agroquímicos son la principal fuente potencial de contaminación del agua en la microcuenca. Los resultados obtenidos muestran la necesidad de llevar a cabo una gestión integrada del territorio que garantice un desarrollo socioambiental sostenible.
Resumo:
A regional geochemical reconnaissance by bottom stream sediment sampling, has delineated an area of high metal content in the north central sector of the North Creek Watershed. Development of a geochemical model, relating to the relative chemical concentrations derived from the chemical analyses of bottom sediments, suspended sediments, stream waters and well waters collected from the north central sector, was designed to discover the source of the anomaly. Samples of each type of material were analysed by the A.R.L. Direct Reading Multi-element Emission Spectrograph Q.A. 137 for elements: Na, K, Ca, Sr, Si, As, Pb, Zn, Cd, Ni, Ti, Ag, Mo, Be, Fe, AI, Mn, Cu, Cr, P and Y. Anomalous results led to the discovery of a spring, the waters of which carried high concentrations of Zn, Cd, Pb, As, Ni, Ti, Ag, Sr and Si. In addition, the spring waters had high concentrations of Na, Ca, Mg, 504 , alkalinity, N03' and low concentrations of K, Cl and NH3. Increased specific conductivity (up to 2500 ~mho/cm.) was noted in the spring waters as well as increased calculated total dissolved solids (up to 2047 mg/l) and increased ionic strength (up to 0.06). On the other hand, decreases were noted in water temperature (8°C), pH (pH 7.2) and Eh (+.154 volts). Piezometer nests were installed in the anomalous north central sector of the watershed. In accordance with the slope of the piezometric surface from wells cased down to the till/bedrock interface, groundwater flow is directed from the recharge area (northwest of the anomaly) towards the artesian spring via the highly fractured dolostone aquifer of the Upper Eramosa Member. The bedrock aquifer is confined by the overlying Halton till and the underlying Lower Eramosa Member (Vinemount Shale). The oxidation of sphalerite and galena and the dissolution of gypsum, celestite, calcite, and dolomite within the Eramosa Member, contributed its highly, dissolved constituents to the circulating groundwaters, the age of which is greater than 20 years as determined by tritium dating. Groundwater is assumed to flow along the Vinemount Shale and discharge as an artesian spring where the shale unit becomes discontinuous. The anomaly is located on a topographic low where bedrock is close to the surface. Thermodynamic evaluation of the major ion speciation from the anomalous spring and surface waters, showed gypsum to be supersaturated in these spring waters. Downstream from the spring, the loss of carbon dioxide from the spring waters resulted in the supersaturation with respect to calcite, aragonite, magnesite and dolomite. This corresponded with increases in Eh (+.304 volts) and pH (pH 8.5) in the anomalous surface waters. In conclusion, the interaction of groundwaters within the highly, mineralized carbonate source (Eramosa Member) resulted in the characteristic Ca*Mg*HC03*S04 spring water at the anomalous site, which appeared to be the principle effect upon controlling the anomalous surface water chemistry.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The cultivation of sugarcane demands the use of herbicides such as Diuron and Hexazinone. Some supply wells from Ribeirão Preto, SP, Brazil, built in the Guarani Aquifer are located in recharge points, and the presence of sandy Quartzarenic Neosol in these areas increases the vulnerability of the groundwater to contamination from herbicides This paper reports the water quality monitored in some wells located in the recharge area and the removal of Diuron and Hexazinone by means of adsorption in granular activated carbon (GAC), preceded or not by preoxidation with chlorine and chlorine dioxide in a pilot plant. The results indicated that Diuron was more strongly adsorbed than Hexazinone and that the saturation time of the GAC in the test with preoxidation was shorter than in the test without preoxidation, which may have occurred mainly due to the formation of by-products that competed with the adsorption of the herbicides.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study aimed to evaluate a period of 38 years, the use and soil occupation of the Paradise River watershed, inserted in the citys of São Manuel and Areiópolis-SP using aerial photographs for the year 1972 and TM image (Thematic Mapper) obtained by the Landsat-5 satellite, in 2010, using geoprocessing techniques. The watershed in question is very important for the city of São Manuel-SP, because its urban area is inserted in its divisors which part of it belongs to the Environmental Protection Area (APA) Perimeter Botucatu-SP, considered a recharge area of the aquifer Guarani. Today, the development of agriculture faces challenges, which is to produce more food without impacting the environment. Allied to this concern, research institutions have sought new technologies that allow the detection and quantification of human actions, enabling interventions in order to minimize possible damage to the environment. Among these technologies can be cited Geographic Information Systems (GIS), which a large volume of data and information stored in a region at different times can be evaluated in the same time, suggesting different approaches to the planning of land use. The results of the mapping of areas of use and soil occupation result nine classes in 1972, and the coffee culture showed the biggest occupation (37.94%) of the total area. The 2010 mapping formulated twelve classes of use, which demonstrated the predominance of sugar cane (37.94%), on the areas occupied by coffee and pasture before. The land use maps of 1972 and 2010 showed results that show intense human activity in the modification of natural landscape.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The city of Bath is a World Heritage site and its thermal waters, the Roman Baths and new spa development rely on undisturbed flow of the springs (45 °C). The current investigations provide an improved understanding of the residence times and flow regime as basis for the source protection. Trace gas indicators including the noble gases (helium, neon, argon, krypton and xenon) and chlorofluorocarbons (CFCs), together with a more comprehensive examination of chemical and stable isotope tracers are used to characterise the sources of the thermal water and any modern components. It is shown conclusively by the use of 39Ar that the bulk of the thermal water has been in circulation within the Carboniferous Limestone for at least 1000 years. Other stable isotope and noble gas measurements confirm previous findings and strongly suggest recharge within the Holocene time period (i.e. the last 12 kyr). Measurements of dissolved 85Kr and chlorofluorocarbons constrain previous indications from tritium that a small proportion (<5%) of the thermal water originates from modern leakage into the spring pipe passing through Mesozoic valley fill underlying Bath. This introduces small amounts of O2 into the system, resulting in the Fe precipitation seen in the King’s Spring. Silica geothermometry indicates that the water is likely to have reached a maximum temperature of between 69–99 °C, indicating a most probable maximum circulation depth of ∼3 km, which is in line with recent geological models. The rise to the surface of the water is sufficiently indirect that a temperature loss of >20 °C is incurred. There is overwhelming evidence that the water has evolved within the Carboniferous Limestone formation, although the chemistry alone cannot pinpoint the geometry of the recharge area or circulation route. For a likely residence time of 1–12 kyr, volumetric calculations imply a large storage volume and circulation pathway if typical porosities of the limestone at depth are used, indicating that much of the Bath-Bristol basin must be involved in the water storage.