858 resultados para Receiver-operating Characteristics
Resumo:
Transit agencies across the world are increasingly shifting their fare collection mechanisms towards fully automated systems like the smart card. One of the objectives in implementing such a system is to reduce the boarding time per passenger and hence reduce the overall dwell time for the buses at the bus stops/bus rapid transit (BRT) stations. TransLink, the transit authority responsible for public transport management in South East Queensland, has introduced ‘GoCard’ technology using the Cubic platform for fare collection on its public transport system. In addition to this, three inner city BRT stations on South East Busway spine are operating as pre-paid platforms during evening peak time. This paper evaluates the effects of these multiple policy measures on operation of study busway station. The comparison between pre and post policy scenarios suggests that though boarding time per passenger has decreased, while the alighting time per passenger has increased slightly. However, there is a substantial reduction in operating efficiency was observed at the station.
Resumo:
A non-parametric method was developed and tested to compare the partial areas under two correlated Receiver Operating Characteristic curves. Based on the theory of generalized U-statistics the mathematical formulas have been derived for computing ROC area, and the variance and covariance between the portions of two ROC curves. A practical SAS application also has been developed to facilitate the calculations. The accuracy of the non-parametric method was evaluated by comparing it to other methods. By applying our method to the data from a published ROC analysis of CT image, our results are very close to theirs. A hypothetical example was used to demonstrate the effects of two crossed ROC curves. The two ROC areas are the same. However each portion of the area between two ROC curves were found to be significantly different by the partial ROC curve analysis. For computation of ROC curves with large scales, such as a logistic regression model, we applied our method to the breast cancer study with Medicare claims data. It yielded the same ROC area computation as the SAS Logistic procedure. Our method also provides an alternative to the global summary of ROC area comparison by directly comparing the true-positive rates for two regression models and by determining the range of false-positive values where the models differ. ^
Resumo:
Cover title.
Resumo:
"March 1992."
Investigation of the operating characteristics of the Iowa sediment concentration measuring system /
Resumo:
"May 1976."
Resumo:
Mode of access: Internet.
Resumo:
"Purdue Research Foundation. Research project no.1717. Project Ae-33. This research was supported by the McDonnell Aircraft Corporation under Contract no. 6140-20 P. O. 7S4899-R."
Resumo:
The growing need for fast sampling of explosives in high throughput areas has increased the demand for improved technology for the trace detection of illicit compounds. Detection of the volatiles associated with the presence of the illicit compounds offer a different approach for sensitive trace detection of these compounds without increasing the false positive alarm rate. This study evaluated the performance of non-contact sampling and detection systems using statistical analysis through the construction of Receiver Operating Characteristic (ROC) curves in real-world scenarios for the detection of volatiles in the headspace of smokeless powder, used as the model system for generalizing explosives detection. A novel sorbent coated disk coined planar solid phase microextraction (PSPME) was previously used for rapid, non-contact sampling of the headspace containers. The limits of detection for the PSPME coupled to IMS detection was determined to be 0.5-24 ng for vapor sampling of volatile chemical compounds associated with illicit compounds and demonstrated an extraction efficiency of three times greater than other commercially available substrates, retaining >50% of the analyte after 30 minutes sampling of an analyte spike in comparison to a non-detect for the unmodified filters. Both static and dynamic PSPME sampling was used coupled with two ion mobility spectrometer (IMS) detection systems in which 10-500 mg quantities of smokeless powders were detected within 5-10 minutes of static sampling and 1 minute of dynamic sampling time in 1-45 L closed systems, resulting in faster sampling and analysis times in comparison to conventional solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Similar real-world scenarios were sampled in low and high clutter environments with zero false positive rates. Excellent PSPME-IMS detection of the volatile analytes were visualized from the ROC curves, resulting with areas under the curves (AUC) of 0.85-1.0 and 0.81-1.0 for portable and bench-top IMS systems, respectively. Construction of ROC curves were also developed for SPME-GC-MS resulting with AUC of 0.95-1.0, comparable with PSPME-IMS detection. The PSPME-IMS technique provides less false positive results for non-contact vapor sampling, cutting the cost and providing an effective sampling and detection needed in high-throughput scenarios, resulting in similar performance in comparison to well-established techniques with the added advantage of fast detection in the field.
Resumo:
The thesis "COMPARATIVE ANALYSIS OF EFFICIENCY AND OPERATING CHARACTERISTICS OF AUTOMOTIVE POWERTRAIN ARCHITECTURES THROUGH CHASSIS DYNAMOMETER TESTING" was completed through a collaborative partnership between Michigan Technological University and Argonne National Laboratory under a contractual agreement titled "Advanced Vehicle Characterization at Argonne National Laboratory". The goal of this project was to investigate, understand and document the performance and operational strategy of several modern passenger vehicles of various architectures. The vehicles were chosen to represent several popular engine and transmission architectures and were instrumented to allow for data collection to facilitate comparative analysis. In order to ensure repeatability and reliability during testing, each vehicle was tested over a series of identical drive cycles in a controlled environment utilizing a vehicle chassis dynamometer. Where possible, instrumentation was preserved between vehicles to ensure robust data collection. The efficiency and fuel economy performance of the vehicles was studied. In addition, the powertrain utilization strategies, significant energy loss sources, tailpipe emissions, combustion characteristics, and cold start behavior were also explored in detail. It was concluded that each vehicle realizes different strengths and suffers from different limitations in the course of their attempts to maximize efficiency and fuel economy. In addition, it was observed that each vehicle regardless of architecture exhibits significant energy losses and difficulties in cold start operation that can be further improved with advancing technology. It is clear that advanced engine technologies and driveline technologies are complimentary aspects of vehicle design that must be utilized together for best efficiency improvements. Finally, it was concluded that advanced technology vehicles do not come without associated cost; the complexity of the powertrains and lifecycle costs must be considered to understand the full impact of advanced vehicle technology.
Resumo:
BACKGROUND: The Edinburgh Postnatal Depression Scale (EPDS) has been validated and used extensively in screening for depression in new mothers, both in English speaking and non-English speaking communities. While some studies have reported the use of the EPDS with fathers, none have validated it for this group, and thus the appropriate cut-off score for screening for depression or anxiety caseness for this population is not known. METHODS: Couples were recruited antenatally and interviewed at six weeks postpartum. EPDS scores and distress caseness (depression or anxiety disorders) for 208 fathers and 230 mothers were determined using the Diagnostic Interview Schedule. RESULTS: Analyses of the EPDS for fathers using distress caseness (depression or anxiety disorders) as the criterion shows that a cut-off of 5/6 has optimum receiver operating characteristics. Furthermore acceptable reliability (split-half and internal consistency) and validity (concurrent) coefficients were obtained. For mothers the optimum cut-off screening value to detect distress caseness was 7/8. Item analysis revealed that fathers endorsed seven of the ten items at lower rates to mothers, with the most significant being that referring to crying. CONCLUSIONS: The EPDS is a reliable and valid measure of mood in fathers. Screening for depression or anxiety disorders in fathers requires a two point lower cut-off than screening for depression or anxiety in mothers, and we recommend this cut-off to be 5/6
Resumo:
Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
Resumo:
Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, k -nearest neighbor ( k -NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70 %, sensitivity of 91.11 %, and specificity of 96.30 % using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.
Resumo:
We propose expected attainable discrimination (EAD) as a measure to select discrete valued features for reliable discrimination between two classes of data. EAD is an average of the area under the ROC curves obtained when a simple histogram probability density model is trained and tested on many random partitions of a data set. EAD can be incorporated into various stepwise search methods to determine promising subsets of features, particularly when misclassification costs are difficult or impossible to specify. Experimental application to the problem of risk prediction in pregnancy is described.