994 resultados para Receiver performance
Resumo:
We have proposed a new technique of all-optical nonlinear pulse processing for use at a RZ optical receiver, which is based on an AM or any device with a similar function of temporal gating/slicing enhanced by the effect of Kerr nonlinearity in a NDF. The efficiency of the technique has been demonstrated by application to timing jitter and noise-limited RZ transmission at 40 Gbit/s. Substantial suppression of the signal timing jitter and overall improvement of the receiver performance has been demonstrated using the proposed method.
Resumo:
Dual Carrier Modulation (DCM) is currently used as the higher data rate modulation scheme for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the user’s experience of these products. In this paper, Log Likelihood Ratio (LLR) demapping method is used for the DCM demaper implemented in fixed point model. Channel State Information (CSI) aided scheme coupled with the band hopping information is used as the further technique to improve the DCM demapping performance. The receiver performance for the fixed point DCM is simulated in realistic multi-path environments.
Resumo:
A unified and general vision of different space-time processors is presented. Many popular receivers can beaccomodated, like V-RAKE receivers, weighted V-RAKE, or spatial narrowband beamforming. By makingappropriate assumptions on the space/time characteristic of the interference it is possible to enhance theperformance of the receiver through spatial/temporal pre-processors. These receivers will be tested in the FDDmode of UTRA.
Resumo:
Recent developments in the UK concerning the reception of Digital Terrestrial Television (DTT) have indicated that, as it currently stands, DVB-T receivers may not be sufficient to maintain adequate quality of digital picture information to the consumer. There are many possible reasons why such large errors are being introduced into the system preventing reception failure. It has been suggested that one possibility is that the assumptions concerning the immunity to multipath that Coded Orthogonal Frequency Division Multiplex (COFDM) is expected to have, may not be entirely accurate. Previous research has shown that multipath can indeed have an impact on a DVB-T receiver performance. In the UK, proposals have been made to change the modulation from 64-QAM to 16-QAM to improve the immunity to multipath, but this paper demonstrates that the 16-QAM performance may again not be sufficient. To this end, this paper presents a deterministic approach to equalization such that a 64-QAM receiver with the simple equalizer presented in this paper has the same order of MPEG-2 BER performance as that to a 16-QAM receiver without equalization. Thus, alleviating the requirement in the broadcasters to migrate from 64-QAM to 16-QAM Of course, by adding the equalizer to a 16-QAM receiver then the BER is also further improved and thus creating one more step to satisfying the consumers(1).
Resumo:
This chapter considers the Multiband Orthogonal Frequency Division Multiplexing (MB- OFDM) modulation and demodulation with the intention to optimize the Ultra-Wideband (UWB) system performance. OFDM is a type of multicarrier modulation and becomes the most important aspect for the MB-OFDM system performance. It is also a low cost digital signal component efficiently using Fast Fourier Transform (FFT) algorithm to implement the multicarrier orthogonality. Within the MB-OFDM approach, the OFDM modulation is employed in each 528 MHz wide band to transmit the data across the different bands while also using the frequency hopping technique across different bands. Each parallel bit stream can be mapped onto one of the OFDM subcarriers. Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for MB-OFDM in the ECMA-368 defined UWB radio platform. A dual QPSK soft-demapper is suitable for ECMA-368 that exploits the inherent Time-Domain Spreading (TDS) and guard symbol subcarrier diversity to improve the receiver performance, yet merges decoding operations together to minimize hardware and power requirements. There are several methods to demap the DCM, which are soft bit demapping, Maximum Likelihood (ML) soft bit demapping, and Log Likelihood Ratio (LLR) demapping. The Channel State Information (CSI) aided scheme coupled with the band hopping information is used as a further technique to improve the DCM demapping performance. ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. An alternative high data rate modulation scheme termed Dual Circular 32-QAM that fits within the configuration of the current standard increasing system throughput thus maintaining the high rate throughput even with a moderate level of dropped packets.
Resumo:
Ionospheric scintillations are caused by time-varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between similar to 50 degrees N and similar to 80 degrees N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sigma(phi) represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise 'equal weights' model. For pseudorange processing, relative weights were computed, so that a 'scintillation-mitigated' solution could be performed and compared to the (non-mitigated) 'equal weights' solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
En este proyecto realizaremos un estudio del efecto de las interferencias procedentes de las redes públicas y veremos cómo afectan el rendimiento de las comunicaciones GSM-R que están en la banda de frecuencias adyacente, por un lado, definiremos las características de las redes públicas y como afectan los niveles de potencia y los anchos de banda de redes de banda ancha, especialmente LTE que dispone de un ancho de banda adaptativo que puede llegar hasta 20 MHZ, y por otro lado definiremos las características y las exigencias de las comunicaciones GSM-R que es una red privada que se utiliza actualmente para comunicaciones ferroviales. Con el objetivo de determinar el origen y los motivos de estas interferencias vamos a explicar cómo se produzcan las emisiones no deseadas de las redes públicas que son fruto de la intermodulación que se produzca por las características no lineales de los amplificadores, entre las emisiones no deseadas se puede diferenciar entre el dominio de los espurios y el dominio de las emisiones fuera de banda, para determinar el nivel de las emisiones fuera de banda definiremos la relación de fugas del canal adyacente, ACLR, que determina la diferencia entre el pico de la señal deseada y el nivel de señal interferente en la banda de paso. Veremos cómo afectan estas emisiones no deseadas a las comunicaciones GSMR en el caso de interferencias procedentes de señales de banda estrecha, como es el caso de GSM, y como afectan en el caso de emisiones de banda ancha con los protocolos UMTS y LTE, también estudiaremos como varia el rendimiento de la comunicación GSM-R frente a señales LTE de diferentes anchos de banda. Para reducir el impacto de las interferencias sobre los receptores GSM-R, analizaremos el efecto de los filtros de entrada de los receptores GSM-R y veremos cómo varia la BER y la ACLR. Además, con el objetivo de evaluar el rendimiento del receptor GSM-R ante diferentes tipos de interferencias, simularemos dos escenarios donde la red GSM-R se verá afectada por las interferencias procedente de una estación base de red pública, en el primer escenario la distancia entre la BS y MS GSM-R será de 4.6 KM, mientras en el segundo escenario simularemos una situación típica cuando un tren está a una distancia corta (25 m) de la BS de red pública. Finalmente presentaremos los resultados en forma de graficas de BER y ACLR, y tablas indicando los diferentes niveles de interferencias y la diferencia entre la potencia a la que obtenemos un valor óptimo de BER, 10-3, sin interferencia y la potencia a la que obtenemos el mismo valor con interferencias. ABSTRACT In this project we will study the interference effect from public networks and how they affect the performance of GSM-R communications that are in the adjacent frequency band, furthermore, we will define the characteristics of public networks and will explain how the power levels and bandwidth broadband networks are affected as a result, especially LTE with adaptive bandwidth that can reach 20 MHZ. Lastly, we will define the characteristics and requirements of the GSM-R communications, a private network that is currently used for railways communications. In order to determine the origin and motives of these interferences, we will explain what causes unwanted emissions of public networks that occur as a result. The intermodulation, which is caused by the nonlinear characteristics of amplifiers. Unwanted emissions from the transmitter are divided into OOB (out-of-band) emission and spurious emissions. The OOB emissions are defined by an Adjacent Channel Leakage Ratio (ACLR) requirement. We'll analyze the effect of the OOB emission on the GSM-R communication in the case of interference from narrowband signals such as GSM, and how they affect emissions in the case of broadband such as UMTS and LTE; also we will study how performance varies with GSM-R versus LTE signals of different bandwidths. To reduce the impact of interference on the GSM-R receiver, we analyze the effect of input filters GSM-R receivers to see how it affects the BER (Bits Error Rate) and ACLR. To analyze the GSM-R receiver performance in this project, we will simulate two scenarios when the GSM-R will be affected by interference from a base station (BS). In the first case the distance between the public network BS and MS GSM-R is 4.6 KM, while the second case simulates a typical situation when a train is within a short distance, 25 m, of a public network BS. Finally, we will present the results as BER and ACLR graphs, and tables showing different levels of interference and the differences between the power to obtain an optimal value of BER, 10-3, without interference, and the power that gets the same value with interference.
Resumo:
A noncoherent vector delay/frequency-locked loop (VDFLL) architecture for GNSS receivers is proposed. A bank of code and frequency discriminators feeds a central extended Kalman filter that estimates the receiver's position and velocity, besides the clock error. The VDFLL architecture performance is compared with the one of the classic scalar receiver, both for scintillation and multipath scenarios, in terms of position errors. We show that the proposed solution is superior to the conventional scalar receivers, which tend to lose lock rapidly, due to the sudden drops of the received signal power.
Resumo:
We analyze the advantages and drawbacks of a vector delay/frequency-locked loop (VDFLL) architecture regarding the conventional scalar and the vector delay-locked loop (VDLL) architectures for GNSS receivers in harsh scenarios that include ionospheric scintillation, multipath, and high dynamics motion. The VDFLL is constituted by a bank of code and frequency discriminators feeding a central extended Kaiman filter (EKF) that estimates the receiver's position, velocity, and clock bias. Both code and frequency loops are closed vectorially through the EKF. The VDLL closes the code loop vectorially and the phase loops through individual PLLs while the scalar receiver closes both loops by means of individual independent PLLs and DLLs.
Resumo:
A non-coherent vector delay/frequency-locked loop architecture for GNSS receivers is proposed. Two dynamics models are considered: PV (position and velocity) and PVA (position, velocity, and acceleration). In contrast with other vector architectures, the proposed approach does not require the estimation of signals amplitudes. Only coarse estimates of the carrier-to-noise ratios are necessary.
Resumo:
The thesis focuses on efficient design methods and reconfiguration architectures suitable for higher performance wireless communication .The work presented in this thesis describes the development of compact,inexpensive and low power communication devices that are robust,testable and capable of handling multiple communication standards.A new multistandard Decimation Filter Design Toolbox is developed in MATLAB GUIDE environment.RNS based dual-mode decimation filters reconfigurable for WCDMA/WiMAX and WCDMA/WLANa standards are designed and implemented.It offers high speed operation with lesser area requirement and lower dynamic power dissipation.A novel sigma-delta based direct analog-to-residue converter that reduces the complexity of RNS conversion circuitry is presented.The performance of an OFDM communication system with a new RRNS-convolutional concatenated coding is analysed and improved BER performance is obtained under different channel conditions. Easily testable MAC units for filters are presented using Reed-Muller logic for realization.