889 resultados para Realized volatility


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the relationship between the volatility implied in option prices and the subsequently realized volatility by using the S&P/ASX 200 index options (XJO) traded on the Australian Stock Exchange (ASX) during a period of 5 years. Unlike stock index options such as the S&P 100 index options in the US market, the S&P/ASX 200 index options are traded infrequently and in low volumes, and have a long maturity cycle. Thus an errors-in-variables problem for measurement of implied volatility is more likely to exist. After accounting for this problem by instrumental variable method, it is found that both call and put implied volatilities are superior to historical volatility in forecasting future realized volatility. Moreover, implied call volatility is nearly an unbiased forecast of future volatility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecasts generated by time series models traditionally place greater weight on more recent observations. This paper develops an alternative semi-parametric method for forecasting that does not rely on this convention and applies it to the problem of forecasting asset return volatility. In this approach, a forecast is a weighted average of historical volatility, with the greatest weight given to periods that exhibit similar market conditions to the time at which the forecast is being formed. Weighting is determined by comparing short-term trends in volatility across time (as a measure of market conditions) by means of a multivariate kernel scheme. It is found that the semi-parametric method produces forecasts that are significantly more accurate than a number of competing approaches at both short and long forecast horizons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent literature has focused on realized volatility models to predict financial risk. This paper studies the benefit of explicitly modeling jumps in this class of models for value at risk (VaR) prediction. Several popular realized volatility models are compared in terms of their VaR forecasting performances through a Monte Carlo study and an analysis based on empirical data of eight Chinese stocks. The results suggest that careful modeling of jumps in realized volatility models can largely improve VaR prediction, especially for emerging markets where jumps play a stronger role than those in developed markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to forecast volatility, and the method of computing quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns of five currencies. The forecasting models that have been used in recent analyses of the predictability of daily realized volatility permit a comparison of the predictive power of different measures of intraday variation and intraday returns in forecasting exchange rate variability. The methods of computing quantile forecasts include making distributional assumptions for future daily returns as well as using the empirical distribution of predicted standardized returns with both rolling and recursive samples. Our main findings are that the Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts for currencies which experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can improve forecasts when there are shifts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using intraday data for the most actively traded stocks on the São Paulo Stock Market (BOVESPA) index, this study considers two recently developed models from the literature on the estimation and prediction of realized volatility: the Heterogeneous Autoregressive Model of Realized Volatility (HAR-RV), developed by Corsi (2009), and the Mixed Data Sampling model (MIDAS-RV), developed by Ghysels et al. (2004). Using measurements to compare in-sample and out-of-sample forecasts, better results were obtained with the MIDAS-RV model for in-sample forecasts. For out-of-sample forecasts, however, there was no statistically signi cant di¤erence between the models. We also found evidence that the use of realized volatility induces distributions of standardized returns that are closer to normal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit recent nonparametric asymptotic distributional results, are both easy-to-implement and highly accurate in empirically realistic situations. We also illustrate that properly accounting for the measurement errors in the volatility forecast evaluations reported in the existing literature can result in markedly higher estimates for the true degree of return volatility predictability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This note develops general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit the recent asymptotic distributional results in Barndorff-Nielsen and Shephard (2002a), are both easy to implement and highly accurate in empirically realistic situations. On properly accounting for the measurement errors in the volatility forecast evaluations reported in Andersen, Bollerslev, Diebold and Labys (2003), the adjustments result in markedly higher estimates for the true degree of return-volatility predictability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The price formation of financial assets is a complex process. It extends beyond the standard economic paradigm of supply and demand to the understanding of the dynamic behavior of price variability, the price impact of information, and the implications of trading behavior of market participants on prices. In this thesis, I study aggregate market and individual assets volatility, liquidity dimensions, and causes of mispricing for US equities over a recent sample period. How volatility forecasts are modeled, what determines intradaily jumps and causes changes in intradaily volatility and what drives the premium of traded equity indexes? Are they induced, for example, by the information content of lagged volatility and return parameters or by macroeconomic news, changes in liquidity and volatility? Besides satisfying our intellectual curiosity, answers to these questions are of direct importance to investors developing trading strategies, policy makers evaluating macroeconomic policies and to arbitrageurs exploiting mispricing in exchange-traded funds. Results show that the leverage effect and lagged absolute returns improve forecasts of continuous components of daily realized volatility as well as jumps. Implied volatility does not subsume the information content of lagged returns in forecasting realized volatility and its components. The reported results are linked to the heterogeneous market hypothesis and demonstrate the validity of extending the hypothesis to returns. Depth shocks, signed order flow, the number of trades, and resiliency are the most important determinants of intradaily volatility. In contrast, spread shock and resiliency are predictive of signed intradaily jumps. There are fewer macroeconomic news announcement surprises that cause extreme price movements or jumps than those that elevate intradaily volatility. Finally, the premium of exchange-traded funds is significantly associated with momentum in net asset value and a number of liquidity parameters including the spread, traded volume, and illiquidity. The mispricing of industry exchange traded funds suggest that limits to arbitrage are driven by potential illiquidity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigates how best to forecast optimal portfolio weights in the context of a volatility timing strategy. It measures the economic value of a number of methods for forming optimal portfolios on the basis of realized volatility. These include the traditional econometric approach of forming portfolios from forecasts of the covariance matrix, and a novel method, where a time series of optimal portfolio weights are constructed from observed realized volatility and directly forecast. The approach proposed here of directly forecasting portfolio weights shows a great deal of merit. Resulting portfolios are of equivalent economic benefit to a number of competing approaches and are more stable across time. These findings have obvious implications for the manner in which volatility timing is undertaken in a portfolio allocation context.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on unique news data relating to gold and crude oil, we investigate how news volume and sentiment, shocks in trading activity, market depth and trader positions unrelated to information flow covary with realized volatility. Positive shocks to the rate of news arrival, and negative shocks to news sentiment exhibit the largest effects. After controlling for the level of news flow and cross-correlations, net trader positions play only a minor role. These findings are at odds with those of [Wang (2002a). The Journal of Futures Markets, 22, 427–450; Wang (2002b). The Financial Review, 37, 295–316], but are consistent with the previous literature which doesn't find a strong link between volatility and trader positions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the most fundamental and widely accepted ideas in finance is that investors are compensated through higher returns for taking on non-diversifiable risk. Hence the quantification, modeling and prediction of risk have been, and still are one of the most prolific research areas in financial economics. It was recognized early on that there are predictable patterns in the variance of speculative prices. Later research has shown that there may also be systematic variation in the skewness and kurtosis of financial returns. Lacking in the literature so far, is an out-of-sample forecast evaluation of the potential benefits of these new more complicated models with time-varying higher moments. Such an evaluation is the topic of this dissertation. Essay 1 investigates the forecast performance of the GARCH (1,1) model when estimated with 9 different error distributions on Standard and Poor’s 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of variance from intra-day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. In Essay 2, by using 20 years of daily Standard and Poor 500 index returns, it is found that density forecasts are much improved by allowing for constant excess kurtosis but not improved by allowing for skewness. By allowing the kurtosis and skewness to be time varying the density forecasts are not further improved but on the contrary made slightly worse. In Essay 3 a new model incorporating conditional variance, skewness and kurtosis based on the Normal Inverse Gaussian (NIG) distribution is proposed. The new model and two previously used NIG models are evaluated by their Value at Risk (VaR) forecasts on a long series of daily Standard and Poor’s 500 returns. The results show that only the new model produces satisfactory VaR forecasts for both 1% and 5% VaR Taken together the results of the thesis show that kurtosis appears not to exhibit predictable time variation, whereas there is found some predictability in the skewness. However, the dynamic properties of the skewness are not completely captured by any of the models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The low predictive power of implied volatility in forecasting the subsequently realized volatility is a well-documented empirical puzzle. As suggested by e.g. Feinstein (1989), Jackwerth and Rubinstein (1996), and Bates (1997), we test whether unrealized expectations of jumps in volatility could explain this phenomenon. Our findings show that expectations of infrequently occurring jumps in volatility are indeed priced in implied volatility. This has two important consequences. First, implied volatility is actually expected to exceed realized volatility over long periods of time only to be greatly less than realized volatility during infrequently occurring periods of very high volatility. Second, the slope coefficient in the classic forecasting regression of realized volatility on implied volatility is very sensitive to the discrepancy between ex ante expected and ex post realized jump frequencies. If the in-sample frequency of positive volatility jumps is lower than ex ante assessed by the market, the classic regression test tends to reject the hypothesis of informational efficiency even if markets are informationally effective.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We exploit the distributional information contained in high-frequency intraday data in constructing a simple conditional moment estimator for stochastic volatility diffusions. The estimator is based on the analytical solutions of the first two conditional moments for the latent integrated volatility, the realization of which is effectively approximated by the sum of the squared high-frequency increments of the process. Our simulation evidence indicates that the resulting GMM estimator is highly reliable and accurate. Our empirical implementation based on high-frequency five-minute foreign exchange returns suggests the presence of multiple latent stochastic volatility factors and possible jumps. © 2002 Elsevier Science B.V. All rights reserved.