767 resultados para Real World Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a model of spike-driven synaptic plasticity inspired by experimental observations and motivated by the desire to build an electronic hardware device that can learn to classify complex stimuli in a semisupervised fashion. During training, patterns of activity are sequentially imposed on the input neurons, and an additional instructor signal drives the output neurons toward the desired activity. The network is made of integrate-and-fire neurons with constant leak and a floor. The synapses are bistable, and they are modified by the arrival of presynaptic spikes. The sign of the change is determined by both the depolarization and the state of a variable that integrates the postsynaptic action potentials. Following the training phase, the instructor signal is removed, and the output neurons are driven purely by the activity of the input neurons weighted by the plastic synapses. In the absence of stimulation, the synapses preserve their internal state indefinitely. Memories are also very robust to the disruptive action of spontaneous activity. A network of 2000 input neurons is shown to be able to classify correctly a large number (thousands) of highly overlapping patterns (300 classes of preprocessed Latex characters, 30 patterns per class, and a subset of the NIST characters data set) and to generalize with performances that are better than or comparable to those of artificial neural networks. Finally we show that the synaptic dynamics is compatible with many of the experimental observations on the induction of long-term modifications (spike-timing-dependent plasticity and its dependence on both the postsynaptic depolarization and the frequency of pre- and postsynaptic neurons).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emissions estimation, both during homologation and standard driving, is one of the new challenges that automotive industries have to face. The new European and American regulation will allow a lower and lower quantity of Carbon Monoxide emission and will require that all the vehicles have to be able to monitor their own pollutants production. Since numerical models are too computationally expensive and approximated, new solutions based on Machine Learning are replacing standard techniques. In this project we considered a real V12 Internal Combustion Engine to propose a novel approach pushing Random Forests to generate meaningful prediction also in extreme cases (extrapolation, very high frequency peaks, noisy instrumentation etc.). The present work proposes also a data preprocessing pipeline for strongly unbalanced datasets and a reinterpretation of the regression problem as a classification problem in a logarithmic quantized domain. Results have been evaluated for two different models representing a pure interpolation scenario (more standard) and an extrapolation scenario, to test the out of bounds robustness of the model. The employed metrics take into account different aspects which can affect the homologation procedure, so the final analysis will focus on combining all the specific performances together to obtain the overall conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the pedagogical impact of real-world experimental projects undertaken as part of an advanced undergraduate Fluid Mechanics subject at an Australian university. The projects have been organised to complement traditional lectures and introduce students to the challenges of professional design, physical modelling, data collection and analysis. The physical model studies combine experimental, analytical and numerical work in order to develop students’ abilities to tackle real-world problems. A first study illustrates the differences between ideal and real fluid flow force predictions based upon model tests of buildings in a large size wind tunnel used for research and professional testing. A second study introduces the complexity arising from unsteady non-uniform wave loading on a sheltered pile. The teaching initiative is supported by feedback from undergraduate students. The pedagogy of the course and projects is discussed with reference to experiential, project-based and collaborative learning. The practical work complements traditional lectures and tutorials, and provides opportunities which cannot be learnt in the classroom, real or virtual. Student feedback demonstrates a strong interest for the project phases of the course. This was associated with greater motivation for the course, leading in turn to lower failure rates. In terms of learning outcomes, the primary aim is to enable students to deliver a professional report as the final product, where physical model data are compared to ideal-fluid flow calculations and real-fluid flow analyses. Thus the students are exposed to a professional design approach involving a high level of expertise in fluid mechanics, with sufficient academic guidance to achieve carefully defined learning goals, while retaining sufficient flexibility for students to construct there own learning goals. The overall pedagogy is a blend of problem-based and project-based learning, which reflects academic research and professional practice. The assessment is a mix of peer-assessed oral presentations and written reports that aims to maximise student reflection and development. Student feedback indicated a strong motivation for courses that include a well-designed project component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea behind creating this special issue on real world applications of intelligent tutoring systems was to bring together in a single publication some of the most important examples of success in the use of ITS technology. This will serve as a reference to all researchers working in the area. It will also be an important resource for the industry, showing the maturity of ITS technology and creating an atmosphere for funding new ITS projects. Simultaneously, it will be valuable to academic groups, motivating students for new ideas of ITS and promoting new academic research work in the area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Confidence in decision making is an important dimension of managerialbehavior. However, what is the relation between confidence, on the onehand, and the fact of receiving or expecting to receive feedback ondecisions taken, on the other hand? To explore this and related issuesin the context of everyday decision making, use was made of the ESM(Experience Sampling Method) to sample decisions taken by undergraduatesand business executives. For several days, participants received 4 or 5SMS messages daily (on their mobile telephones) at random moments at whichpoint they completed brief questionnaires about their current decisionmaking activities. Issues considered here include differences between thetypes of decisions faced by the two groups, their structure, feedback(received and expected), and confidence in decisions taken as well as inthe validity of feedback. No relation was found between confidence indecisions and whether participants received or expected to receivefeedback on those decisions. In addition, although participants areclearly aware that feedback can provide both confirming and disconfirming evidence, their ability to specify appropriatefeedback is imperfect. Finally, difficulties experienced inusing the ESM are discussed as are possibilities for further researchusing this methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotic Grasping is an important research topic in robotics since for robots to attain more general-purpose utility, grasping is a necessary skill, but very challenging to master. In general the robots may use their perception abilities like an image from a camera to identify grasps for a given object usually unknown. A grasp describes how a robotic end-effector need to be positioned to securely grab an object and successfully lift it without lost it, at the moment state of the arts solutions are still far behind humans. In the last 5–10 years, deep learning methods take the scene to overcome classical problem like the arduous and time-consuming approach to form a task-specific algorithm analytically. In this thesis are present the progress and the approaches in the robotic grasping field and the potential of the deep learning methods in robotic grasping. Based on that, an implementation of a Convolutional Neural Network (CNN) as a starting point for generation of a grasp pose from camera view has been implemented inside a ROS environment. The developed technologies have been integrated into a pick-and-place application for a Panda robot from Franka Emika. The application includes various features related to object detection and selection. Additionally, the features have been kept as generic as possible to allow for easy replacement or removal if needed, without losing time for improvement or new testing.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: This work presents detailed experimental performance results from tests executed in the hospital environment for Health Monitoring for All (HM4All), a remote vital signs monitoring system based on a ZigBee® (ZigBee Alliance, San Ramon, CA) body sensor network (BSN). MATERIALS AND METHODS: Tests involved the use of six electrocardiogram (ECG) sensors operating in two different modes: the ECG mode involved the transmission of ECG waveform data and heart rate (HR) values to the ZigBee coordinator, whereas the HR mode included only the transmission of HR values. In the absence of hidden nodes, a non-beacon-enabled star network composed of sensing devices working on ECG mode kept the delivery ratio (DR) at 100%. RESULTS: When the network topology was changed to a 2-hop tree, the performance degraded slightly, resulting in an average DR of 98.56%. Although these performance outcomes may seem satisfactory, further investigation demonstrated that individual sensing devices went through transitory periods with low DR. Other tests have shown that ZigBee BSNs are highly susceptible to collisions owing to hidden nodes. Nevertheless, these tests have also shown that these networks can achieve high reliability if the amount of traffic is kept low. Contrary to what is typically shown in scientific articles and in manufacturers' documentation, the test outcomes presented in this article include temporal graphs of the DR achieved by each wireless sensor device. CONCLUSIONS: The test procedure and the approach used to represent its outcomes, which allow the identification of undesirable transitory periods of low reliability due to contention between devices, constitute the main contribution of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a real world multiagent system, where the agents are faced with partial, incomplete and intrinsically dynamic knowledge, conflicts are inevitable. Frequently, different agents have goals or beliefs that cannot hold simultaneously. Conflict resolution methodologies have to be adopted to overcome such undesirable occurrences. In this paper we investigate the application of distributed belief revision techniques as the support for conflict resolution in the analysis of the validity of the candidate beams to be produced in the CERN particle accelerators. This CERN multiagent system contains a higher hierarchy agent, the Specialist agent, which makes use of meta-knowledge (on how the con- flicting beliefs have been produced by the other agents) in order to detect which beliefs should be abandoned. Upon solving a conflict, the Specialist instructs the involved agents to revise their beliefs accordingly. Conflicts in the problem domain are mapped into conflicting beliefs of the distributed belief revision system, where they can be handled by proven formal methods. This technique builds on well established concepts and combines them in a new way to solve important problems. We find this approach generally applicable in several domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research and development around indoor positioning and navigation is capturing the attention of an increasing number of research groups and labs around the world. Among the several techniques being proposed for indoor positioning, solutions based on Wi-Fi fingerprinting are the most popular since they exploit existing WLAN infrastructures to support software-only positioning, tracking and navigation applications. Despite the enormous research efforts in this domain, and despite the existence of some commercial products based on Wi-Fi fingerprinting, it is still difficult to compare the performance, in the real world, of the several existing solutions. The EvAAL competition, hosted by the IPIN 2015 conference, contributed to fill this gap. This paper describes the experience of the RTLS@UM team in participating in track 3 of that competition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling Extract-Transform-Load (ETL) processes of a Data Warehousing System has always been a challenge. The heterogeneity of the sources, the quality of the data obtained and the conciliation process are some of the issues that must be addressed in the design phase of this critical component. Commercial ETL tools often provide proprietary diagrammatic components and modeling languages that are not standard, thus not providing the ideal separation between a modeling platform and an execution platform. This separation in conjunction with the use of standard notations and languages is critical in a system that tends to evolve through time and which cannot be undermined by a normally expensive tool that becomes an unsatisfactory component. In this paper we demonstrate the application of Relational Algebra as a modeling language of an ETL system as an effort to standardize operations and provide a basis for uncommon ETL execution platforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Drug-eluting stents have been used in daily practice since 2002, with the clear advantages of reducing the risk of target vessel revascularization and an impressive reduction in restenosis rate by 50%-70%. However, the occurrence of a late thrombosis can compromise long-term results, particularly if the risks of this event were sustained. In this context, a registry of clinical cases gains special value. Objective: To evaluate the efficacy and safety of drug-eluting stents in the real world. Methods: We report on the clinical findings and 8-year follow-up parameters of all patients that underwent percutaneous coronary intervention with a drug-eluting stent from January 2002 to April 2007. Drug-eluting stents were used in accordance with the clinical and interventional cardiologist decision and availability of the stent. Results: A total of 611 patients were included, and clinical follow-up of up to 8 years was obtained for 96.2% of the patients. Total mortality was 8.7% and nonfatal infarctions occurred in 4.3% of the cases. Target vessel revascularization occurred in 12.4% of the cases, and target lesion revascularization occurred in 8% of the cases. The rate of stent thrombosis was 2.1%. There were no new episodes of stent thrombosis after the fifth year of follow-up. Comparative subanalysis showed no outcome differences between the different types of stents used, including Cypher®, Taxus®, and Endeavor®. Conclusion: These findings indicate that drug-eluting stents remain safe and effective at very long-term follow-up. Patients in the "real world" may benefit from drug-eluting stenting with excellent, long-term results.