932 resultados para Real Electricity Markets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamism and ongoing changes that the electricity markets sector is constantly suffering, enhanced by the huge increase in competitiveness, create the need of using simulation platforms to support operators, regulators, and the involved players in understanding and dealing with this complex environment. This paper presents an enhanced electricity market simulator, based on multi-agent technology, which provides an advanced simulation framework for the study of real electricity markets operation, and the interactions between the involved players. MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) uses real data for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations bring to different countries. Also, the development of an upper-ontology to support the communication between participating agents, provides the means for the integration of this simulator with other frameworks, such as MAN-REM (Multi-Agent Negotiation and Risk Management in Electricity Markets). A case study using the enhanced simulation platform that results from the integration of several systems and different tools is presented, with a scenario based on real data, simulating the MIBEL electricity market environment, and comparing the simulation performance with the real electricity market results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compares the procurement cost-minimizing and productive efficiency performance of the auction mechanism used by independent system operators (ISOs) in wholesale electricity auction markets in the U.S. with that of a proposed alternative. The current practice allocates energy contracts as if the auction featured a discriminatory final payment method when, in fact, the markets are uniform price auctions. The proposed alternative explicitly accounts for the market clearing price during the allocation phase. We find that the proposed alternative largely outperforms the current practice on the basis of procurement costs in the context of simple auction markets featuring both day-ahead and real-time auctions and that the procurement cost advantage of the alternative is complete when we simulate the effects of increased competition. We also find that a trade-off between the objectives of procurement cost minimization and productive efficiency emerges in our simple auction markets and persists in the face of increased competition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive electricity transmission network facilitates electricity trading between Finland, Sweden, Norway and Denmark. Currently most of the area's power generation is traded at NordPool, where the trading volumes have steadily increased since the early 1990's, when the exchange was founded. The Nordic electricity is expected to follow the current trend and further integrate with the other European electricity markets. Hydro power is the source for roughly a half of the supply in the Nordic electricity market and most of the hydro is generated in Norway. The dominating role of hydro power distinguishes the Nordic electricity market from most of the other market places. Production of hydro power varies mainly due to hydro reservoirs and demand for electricity. Hydro reservoirs are affected by water inflows that differ each year. The hydro reservoirs explain remarkably the behaviour of the Nordic electricity markets. Therefore among others, Kauppi and Liski (2008) have developed a model that analyzes the behaviour of the markets using hydro reservoirs as explanatory factors. Their model includes, for example, welfare loss due to socially suboptimal hydro reservoir usage, socially optimal electricity price, hydro reservoir storage and thermal reservoir storage; that are referred as outcomes. However, the model does not explain the real market condition but rather an ideal situation. In the model the market is controlled by one agent, i.e. one agent controls all the power generation reserves; it is referred to as a socially optimal strategy. Article by Kauppi and Liski (2008) includes an assumption where an individual agent has a certain fraction of market power, e.g. 20 % or 30 %. In order to maintain the focus of this thesis, this part of their paper is omitted. The goal of this thesis is two-fold. Firstly we expand the results from the socially optimal strategy for years 2006-08, as the earlier study finishes in 2005. The second objective is to improve on the methods from the previous study. This thesis results several outcomes (SPOT-price and welfare loss, etc.) due to socially optimal actions. Welfare loss is interesting as it describes the inefficiency of the market. SPOT-price is an important output for the market participants as it often has an effect on end users' electricity bills. Another function is to modify and try to improve the model by means of using more accurate input data, e.g. by considering pollution trade rights effect on input data. After modifications to the model, new welfare losses are calculated and compared with the same results before the modifications. The hydro reservoir has the higher explanatory significance in the model followed by thermal power. In Nordic markets, thermal power reserves are mostly nuclear power and other thermal sources (coal, natural gas, oil, peat). It can be argued that hydro and thermal reservoirs determine electricity supply. Roughly speaking, the model takes into account electricity demand and supply, and several parameters related to them (water inflow, oil price, etc.), yielding finally the socially optimal outcomes. The author of this thesis is not aware of any similar model being tested before. There have been some other studies that are close to the Kauppi and Liski (2008) model, but those have a somewhat different focus. For example, a specific feature in the model is the focus on long-run capacity usage that differs from the previous studies on short-run market power. The closest study to the model is from California's wholesale electricity markets that, however, uses different methodology. Work is constructed as follows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets in the United States presently employ an auction mechanism to determine the dispatch of power generation units. In this market design, generators submit bid prices to a regulation agency for review, and the regulator conducts an auction selection in such a way that satisfies electricity demand. Most regulators currently use an auction selection method that minimizes total offer costs ["bid cost minimization" (BCM)] to determine electric dispatch. However, recent literature has shown that this method may not minimize consumer payments, and it has been shown that an alternative selection method that directly minimizes total consumer payments ["payment cost minimization" (PCM)] may benefit social welfare in the long term. The objective of this project is to further investigate the long term benefit of PCM implementation and determine whether it can provide lower costs to consumers. The two auction selection methods are expressed as linear constraint programs and are implemented in an optimization software package. Methodology for game theoretic bidding simulation is developed using EMCAS, a real-time market simulator. Results of a 30-day simulation showed that PCM reduced energy costs for consumers by 12%. However, this result will be cross-checked in the future with two other methods of bid simulation as proposed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this scoping paper is to offer an overview of the literature to determine the development to date in the area of residential real estate agency academic and career education in respect to Foreign Direct Investment (FDI) transactions and implications in Australia. This paper will review studies on the issue of foreign real estate ownership and FDI in Australian real estate markets to develop an understanding of the current state of knowledge on residential real estate agency practice, career education and real estate licensing requirements in Australia. The distinction between the real estate profession education, compared to other professions such as accounting, legal and finance is based on the intensity of the professional career training prior or post formal academic training. Real estate education could be carried out with relatively higher standards in terms of licensing requirement, career and academic education. As FDI in the Australian real estate market is a complex globalisation and economic phenomenon, a simple content of residential real estate training and education may not promote proper management or capacity in dealing with relevant foreign residential property market transaction. The preliminary summarising from the literature of residential real estate agency education, with its current relevant or emerging licensing requirement are focused on its role and effectiveness and impact in residential real estate market. Particular focus will be directed to the FDI relevant residential real estate agency transactions and practices, which have been strongly influenced by the current residential real estate market and agency practices. Taken together, there are many opportunities for future research to extend our understanding and improving the residential real estate agency education and training of Foreign Direct Investment in the Australian residential real estate sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.