868 resultados para Reactive power limits of generation buses
Resumo:
In this paper an artificial neural network (ANN) based methodology is proposed for (a) solving the basic load flow, (b) solving the load flow considering the reactive power limits of generation (PV) buses, (c) determining a good quality load flow starting point for ill-conditioned systems, and (d) computing static external equivalent circuits. An analysis of the input data required as well as the ANN architecture is presented. A multilayer perceptron trained with the Levenberg-Marquardt second order method is used. The proposed methodology was tested with the IEEE 30- and 57-bus, and an ill-conditioned 11-bus system. Normal operating conditions (base case) and several contingency situations including different load and generation scenarios have been considered. Simulation results show the excellent performance of the ANN for solving problems (a)-(d). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.
Resumo:
Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations. However, the stochastic behaviour of wind speeds leads to significant disharmony between wind energy production and electricity demand. Wind generation suffers from an intermittent characteristics due to the own diurnal and seasonal patterns of the wind behaviour. Both reactive power and voltage control are important under varying operating conditions of wind farm. To optimize reactive power flow and to keep voltages in limit, an optimization method is proposed in this paper. The objective proposed is minimization of the voltage deviations of the load buses (Vdesired). The approach considers the reactive power limits of wind generators and co-ordinates the transformer taps. This algorithm has been tested under practically varying conditions simulated on a test system. The results are obtained on a system of 50-bus real life equivalent power network. The result shows the efficiency of the proposed method.
Resumo:
Integration of rooftop PVs and increasing peak demand in the residential distribution networks has resulted in unacceptable voltage profile. Curtailing PV generation to alleviate overvoltage problem and making regular network investment to cater peak demand is not always feasible. Reactive capability of the PV inverter can be a solution to address voltage dip and over voltage problems to some extent. This paper proposes an algorithm to utilize reactive capability of PV inverters and investigate their effectiveness on feeder length and R/X ratio of the line. Feeder loading level for a particular R/X ratio to have acceptable voltage profile is also investigated. Furthermore, the need of appropriate feeder distances and R/X ratio for acceptable voltage profile, which can be useful for suburban design and distribution planning, is explored.
Resumo:
This paper presents a novel power control strategy that decouples the active and reactive power for a synchronous generator connected to a power network. The proposed control paradigm considers the capacitance of the transmission line along with its resistance and reactance as-well. Moreover the proposed controller takes into account all cases of R-X relationships, thus allowing it to function in Virtual Power Plant (VPP) structures which operate at both medium voltage (MV) and low voltage (LV) levels. The independent control of active and reactive power is achieved through rotational transformations of the terminal voltages and currents at the synchronous generator's output. This paper details the control technique by first presenting the mathematical and electrical network analysis of the methodology and then successfully implementing the control using MATLAB-SIMULINK simulation.
Resumo:
Large penetration of rooftop PVs has resulted in unacceptable voltage profile in many residential distribution feeders. Limiting real power injection from PVs to alleviate over voltage problem is not feasible due to loss of green power and hence corresponding revenue loss. Reactive capability of the PV inverter can be a solution to address over voltage and voltage dip problems to some extent. This paper proposes an algorithm to utilize reactive capability of PV inverters and investigate their effectiveness for voltage improvement based on R/X ratio of the feeder. The length and loading level of the feeder for a particular R/X ratio to have acceptable voltage profile is also investigated. This can be useful for suburban design and residential distribution planning. Furthermore, coordination among different PVs using residential smart meters via a substation based controller is also proposed.
Resumo:
In this work it is discussed the performance of the reactive power demand in three-leg transformer core and three-phase transformer bank, under different conditions of AC/DC double excitation. In order to analyse the influence of double excitation in reactive power theoretically a mathematical model was developed considering the mutual coupling between phases and the magnetic nonlinearity. The validity of the proposed model is verified by means of the experimental and simulated results.
Resumo:
The amount of reactive power margin available in a system determines its proximity to voltage instability under normal and emergency conditions. More the reactive power margin, better is the systems security and vice-versa. A hypothetical way of improving the reactive margin of a synchronous generator is to reduce the real power generation within its mega volt-ampere (MVA) ratings. This real power generation reduction will affect its power contract agreements entered in the electricity market. Owing to this, the benefit that the generator foregoes will have to be compensated by paying them some lost opportunity cost. The objective of this study is three fold. Firstly, the reactive power margins of the generators are evaluated. Secondly, they are improved using a reactive power optimization technique and optimally placed unified power flow controllers. Thirdly, the reactive power capacity exchanges along the tie-lines are evaluated under base case and improved conditions. A detailed analysis of all the reactive power sources and sinks scattered throughout the network is carried out in the study. Studies are carried out on a real life, three zone, 72-bus equivalent Indian southern grid considering normal and contingency conditions with base case operating point and optimised results presented.
Resumo:
A metaheuristic technique for solving the short-term transmission network expansion and reactive power planning problems, at the same time, in regulated power systems using the AC model is presented. The problem is solved using a real genetic algorithm (RGA). For each topology proposed by RGA an indicator is employed to identify the weak buses for new reactive power sources allocation. The fitness function is calculated using the cost of each configuration as well as constraints deviation of an AC optimal power flow (OPF) in which the minimum reactive generation of new reactive sources and the active power losses are objectives. With allocation of reactive power sources at load buses, the circuit capacity increases and the cost of installation could be decreased. The method is tested in a well known test system, presenting good results when compared with other approaches. © 2011 IEEE.
Resumo:
In this paper a heuristic technique for solving simultaneous short-term transmission network expansion and reactive power planning problem (TEPRPP) via an AC model is presented. A constructive heuristic algorithm (CHA) aimed to obtaining a significant quality solution for such problem is employed. An interior point method (IPM) is applied to solve TEPRPP as a nonlinear programming (NLP) during the solution steps of the algorithm. For each proposed network topology, an indicator is deployed to identify the weak buses for reactive power sources placement. The objective function of NLP includes the costs of new transmission lines, real power losses as well as reactive power sources. By allocating reactive power sources at load buses, the circuit capacity may increase while the cost of new lines can be decreased. The proposed methodology is tested on Garver's system and the obtained results shows its capability and the viability of using AC model for solving such non-convex optimization problem. © 2011 IEEE.
Resumo:
This paper studies the feasibility of utilizing the reactive power of grid-connected variable-speed wind generators to enhance the steady-state voltage stability margin of the system. Allowing wind generators to work at maximum reactive power limit may cause the system to operate near the steady-state stability limit, which is undesirable. This necessitates proper coordination of reactive power output of wind generators with other reactive power controllers in the grid. This paper presents a trust region framework for coordinating reactive output of wind generators-with other reactive sources for voltage stability enhancement. Case studies on 418-bus equivalent system of Indian southern grid indicates the effectiveness of proposed methodology in enhancing the steady-state voltage stability margin.
Resumo:
Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind farms for stability enhancement by using the proposed capability curve based reactive power controller; hence DFIG wind farms can function as vital dynamic reactive power resources for power utilities without commissioning additional dynamic reactive power devices. Several network adaptive droop control schemes are also proposed for network voltage management and their performance has been investigated during variable wind conditions. Furthermore, the influence of reactive power capability on network adaptive droop control strategies has been investigated and it has also been shown that enhanced reactive power capability of DFIGs can substantially improve the voltage control performance.
Resumo:
With the liberalisation of electricity market it has become very important to determine the participants making use of the transmission network.Transmission line usage computation requires information of generator to load contributions and the path used by various generators to meet loads and losses. In this study relative electrical distance (RED) concept is used to compute reactive power contributions from various sources like generators, switchable volt-amperes reactive(VAR) sources and line charging susceptances that are scattered throughout the network, to meet the system demands. The transmission line charge susceptances contribution to the system reactive flows and its aid extended in reducing the reactive generation at the generator buses are discussed in this paper. Reactive power transmission cost evaluation is carried out in this study. The proposed approach is also compared with other approaches viz.,proportional sharing and modified Y-bus.Detailed case studies with base case and optimised results are carried out on a sample 8-bus system. IEEE 39-bus system and a practical 72-bus system, an equivalent of Indian Southern grid are also considered for illustration and results are discussed.
Resumo:
Increasing penetration of photovoltaic (PV) as well as increasing peak load demand has resulted in poor voltage profile for some residential distribution networks. This paper proposes coordinated use of PV and Battery Energy Storage (BES) to address voltage rise and/or dip problems. The reactive capability of PV inverter combined with droop based BES system is evaluated for rural and urban scenarios (having different R/X ratios). Results show that reactive compensation from PV inverters alone is sufficient to maintain acceptable voltage profile in an urban scenario (low resistance feeder), whereas, coordinated PV and BES support is required for the rural scenario (high resistance feeder). Constant as well as variable droop based BES schemes are analyzed. The required BES sizing and associated cost to maintain the acceptable voltage profile under both schemes is presented. Uncertainties in PV generation and load are considered, with probabilistic estimation of PV generation and randomness in load modeled to characterize the effective utilization of BES. Actual PV generation data and distribution system network data is used to verify the efficacy of the proposed method.
Resumo:
Significant increase in installation of rooftop Photovoltaic (PV) in the Low-Voltage (LV) residential distribution network has resulted in over voltage problems. Moreover, increasing peak demand creates voltage dip problems and make voltage profile even worse. Utilizing the reactive power capability of PV inverter (RCPVI) can improve the voltage profile to some extent. Resistive caharcteristic (higher R/X ratio) limits the effectiveness of reactive power to provide voltage support in distribution network. Battery Energy Storage (BES), whereas, can store the excess PV generation during high solar insolation time and supply the stored energy back to the grid during peak demand. A coordinated algorithm is developed in this paper to use the reactive capability of PV inverter and BES with droop control. Proposed algorithm is capable to cater the severe voltage violation problem using RCPVI and BES. A signal flow is also mentioned in this research work to ensure smooth communication between all the equipments. Finally the developed algorithm is validated in a test distribution network.