863 resultados para Reactive Oxygen Species (ROS)
Resumo:
Serum amyloid A (SAA) levels are elevated highly in acute phase response and elevated slightly and persistently in chronic diseases such as rheumatoid arthritis and diabetes. Given that fibroblasts exert profound effects on progression of inflammatory chronic diseases, the aim of this study was to investigate the response of fibroblasts to SAA. A dose-dependent increase in O(2)(-) levels was observed by treatment of fibroblasts with SAA (r = 0.99 and P <= 0.001). In addition, the expression of p47-phox was up-regulated by SAA (P < 0.001) and diphenyliodonium (DPI), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, reduced the release of O(2)(-) by 50%. Also, SAA raised fibroblast proliferation (P < 0.001) and this effect was completely abolished by the addition of anti-oxidants (P < 0.001). These findings support the notion that, in chronic inflammatory sites, SAA activated fibroblast proliferation and ROS production.
Resumo:
Brossi P.M., Baccarin R.Y.A. & Massoco C.O. 2012 Do blood components affect the production of reactive oxygen species (ROS) by equine synovial cells in vitro? Pesquisa Veterinaria Brasileira 32(12):1355-1360. Departamento de Clinica Medica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Butanta, Sao Paulo, SP 5508-210, Brazil. E-mail: baccarin@ usp.br Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP) and a commercial blood preparation (conditioned blood product - CBP)(4) - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60) were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), and evaluated by flow cytometry for the production of reactive oxygen species (ROS). Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05). There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.
Resumo:
Background: Reactive oxygen species (ROS) protect the host against a large number of pathogenic microorganisms. ROS have different effects on parasites of the genus Leishmania: some parasites are susceptible to their action, while others seem to be resistant. The role of ROS in L. amazonensis infection in vivo has not been addressed to date. Methods: In this study, C57BL/6 wild-type mice (WT) and mice genetically deficient in ROS production by phagocytes (gp91phox−/− ) were infected with metacyclic promastigotes of L. amazonensis to address the effect of ROS in parasite control. Inflammatory cytokines, parasite loads and myeloperoxidase (MPO) activity were evaluated. In parallel, in vitro infection of peritoneal macrophages was assessed to determine parasite killing, cytokine, NO and ROS production. Results: In vitro results show induction of ROS production by infected peritoneal macrophages, but no effect in parasite killing. Also, ROS do not seem to be important to parasite killing in vivo, but they control lesion sizes at early stages of infection. IFN-γ, TNF-α and IL-10 production did not differ among mouse strains. Myeloperoxidase assay showed augmented neutrophils influx 6 h and 72 h post - infection in gp91phox−/− mice, indicating a larger inflammatory response in gp91phox−/− even at early time points. At later time points, neutrophil numbers in lesions correlated with lesion size: larger lesions in gp91phox−/− at earlier times of infection corresponded to larger neutrophil infiltrates, while larger lesions in WT mice at the later points of infection also displayed larger numbers of neutrophils. Conclusion: ROS do not seem to be important in L. amazonensis killing, but they regulate the inflammatory response probably by controlling neutrophils numbers in lesions.
Resumo:
Reactive oxygen species (ROS) and the sphingolipid ceramide are each partly responsible for the intracellular signal transduction of a variety of physiological, pharmacological or environmental agents. Furthermore, the enhanced production of many of these agents, that utilise ROS and ceramide as signalling intermediates, is associated with the aetiologies of several vascular diseases (e.g. atherosclerosis) or disorders of inflammatory origin (e.g. rheumatoid arthritis; RA). Excessive monocyte recruitment and uncontrolled T cell activation are both strongly implicated in the chronic inflammatory responses that are associated with these pathologies. Therefore the aims of this thesis are (1) to further elucidate the cellular responses to modulations in intracellular ceramide/ROS levels in monocytes and T cells, in order to help resolve the mechanisms of progression of these diseases and (2) to examine both existing agents (methotrexate) and novel targets for possible therapeutic manipulation. Utilising synthetic, short chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide or, stimulation of CD95 to induce ceramide formation, it is described here that ceramide targets and manipulates two discrete sites responsible for ROS generation, preceding the cellular responses of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells. In both cell types, transient elevations in mitochondrial ROS generation were observed. However, the prominent redox altering effects appear to be the ceramide-mediated reduction in cytosolic peroxide, the magnitude of which dictates in part the cellular response in U937 monocytes, Jurkat T-cells and primary human peripheral blood resting or PHA-activated T-cells in vitro. The application of synthetic ceramides to U937 monocytes for short (2 hours) or long (16 hours) treatment periods reduced the membrane expression of proteins associated with cell-cell interaction. Furthermore, ceramide treated U937 monocytes demonstrated reduced adhesion to 5 or 24 hour LPS activated human umbilical vein endothelial cells (HUVEC) but not resting HUVEC. Consequently it is hypothesised that the targeted treatment of monocytes from patients with cardiovascular diseases with short chain synthetic ceramide may reduce disease progression. Herein, the anti-inflammatory and immunosuppressant drug, methotrexate, is described to require ROS production for the induction of cytostasis or cytotoxicity in U937 monocytes and Jurkat T-cells respectively. Further, ROS are critical for methotrexate to abrogate monocyte interaction with activated HUVEC in vitro. The histological feature of RA of enhanced infiltration, survivability and hyporesponsiveness of T-cells within the diseased synovium has been suggested to arise from aberrant signalling. No difference in the concentrations of endogenous T-cell ceramide, the related lipid diacylglycerol (DAG) and cytosolic peroxide ex vivo was observed. TCR activation following PHA exposure in vitro for 72 hours did not induced maintained perturbations in DAG or ceramide in T-cells from RA patients or healthy individuals. However, T-cells from RA patients failed to upregulate cytosolic peroxide in response to PHA, unlike those from normals, despite expressing identical levels of the activation marker CD25. This inability to upregulate cytosolic peroxide may contribute to the T-cell pathology associated with RA by affecting the signalling capacity of redox sensitive biomolecules. These data highlight the importance of two distinctive cellular pools of ROS in mediating complex biological events associated with inflammatory disease and suggest that modulation of cellular ceramides represents a novel therapeutic strategy to minimise monocyte recruitment.
Resumo:
REDOX responsive (nano)materials typically exhibit chemical changes in response to the presence and concentration of oxidants/reductants. Due to the complexity of biological environments, it is critical to ascertain whether the chemical response may depend on the chemical details of the stimulus, in addition to its REDOX potential, and whether chemically different responses can determine a different overall performance of the material. Here, we have used oxidation-sensitive materials, although these considerations can be extended also to reducible ones. In particular, we have used poly(propylene sulfide) (PPS) nanoparticles coated with a PEGylated emulsifier (Pluronic F127); inter alia, we here present also an improved preparative method. The nanoparticles were exposed to two Reactive Oxygen Species (ROS) typically encountered in inflammatory reactions, hydrogen peroxide (H2O2) and hypochlorite (ClO−); their response was evaluated with a variety of techniques, including diffusion NMR spectroscopy that allowed to separately characterize the chemically different colloidal species produced. The two oxidants triggered a different chemical response: H2O2 converted sulfides to sulfoxides, while ClO− partially oxidized them further to sulfones. The different chemistry correlated to a different material response: H2O2 increased the polarity of the nanoparticles, causing them to swell in water and to release the surface PEGylated emulsifier; the uncoated oxidized particles still exhibited very low toxicity. On the contrary, ClO− rapidly converted the nanoparticles into water-soluble, depolymerized fragments with a significantly higher toxicity. The take-home message is that it is more correct to discuss ‘smart’ materials in terms of an environmentally specific response to (REDOX) stimuli. Far from being a problem, this could open the way to more sophisticated and precisely targeted applications.
Resumo:
Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.
Resumo:
Particulate pollution has been widely recognised as an important risk factor to human health. In addition to increases in respiratory and cardiovascular morbidity associated with exposure to particulate matter (PM), WHO estimates that urban PM causes 0.8 million premature deaths globally and that 1.5 million people die prematurely from exposure to indoor smoke generated from the combustion of solid fuels. Despite the availability of a huge body of research, the underlying toxicological mechanisms by which particles induce adverse health effects are not yet entirely understood. Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to PM. In addition to particle-induced generation of ROS in lung tissue cells, several recent studies have shown that particles may also contain ROS. As such, they present a direct cause of oxidative stress and related adverse health effects. Cellular responses to oxidative stress have been widely investigated using various cell exposure assays. However, for a rapid screening of the oxidative potential of PM, less time-consuming and less expensive, cell-free assays are needed. The main aim of this research project was to investigate the application of a novel profluorescent nitroxide probe, synthesised at QUT, as a rapid screening assay in assessing the oxidative potential of PM. Considering that this was the first time that a profluorescent nitroxide probe was applied in investigating the oxidative stress potential of PM, the proof of concept regarding the detection of PM–derived ROS by using such probes needed to be demonstrated and a sampling methodology needed to be developed. Sampling through an impinger containing profluorescent nitroxide solution was chosen as a means of particle collection as it allowed particles to react with the profluorescent nitroxide probe during sampling, avoiding in that way any possible chemical changes resulting from delays between the sampling and the analysis of the PM. Among several profluorescent nitroxide probes available at QUT, bis(phenylethynyl)anthracene-nitroxide (BPEAnit) was found to be the most suitable probe, mainly due to relatively long excitation and emission wavelengths (λex= 430 nm; λem= 485 and 513 nm). These wavelengths are long enough to avoid overlap with the background fluorescence coming from light absorbing compounds which may be present in PM (e.g. polycyclic aromatic hydrocarbons and their derivatives). Given that combustion, in general, is one of the major sources of ambient PM, this project aimed at getting an insight into the oxidative stress potential of combustion-generated PM, namely cigarette smoke, diesel exhaust and wood smoke PM. During the course of this research project, it was demonstrated that the BPEAnit probe based assay is sufficiently sensitive and robust enough to be applied as a rapid screening test for PM-derived ROS detection. Considering that for all three aerosol sources (i.e. cigarette smoke, diesel exhaust and wood smoke) the same assay was applied, the results presented in this thesis allow direct comparison of the oxidative potential measured for all three sources of PM. In summary, it was found that there was a substantial difference between the amounts of ROS per unit of PM mass (ROS concentration) for particles emitted by different combustion sources. For example, particles from cigarette smoke were found to have up to 80 times less ROS per unit of mass than particles produced during logwood combustion. For both diesel and wood combustion it has been demonstrated that the type of fuel significantly affects the oxidative potential of the particles emitted. Similarly, the operating conditions of the combustion source were also found to affect the oxidative potential of particulate emissions. Moreover, this project has demonstrated a strong link between semivolatile (i.e. organic) species and ROS and therefore, clearly highlights the importance of semivolatile species in particle-induced toxicity.
Resumo:
Heterogeneity in tumors has led to the development of combination therapies that enable enhanced cell death. Previously explored combination therapies mostly involved the use of bioactive molecules. In this work, we explored a non-conventional strategy of using carbon nanostructures (CNs) single walled carbon nanotube (SWNT) and graphene oxide (GO)] for potentiating the efficacy of a bioactive molecule paclitaxel (Tx)] for the treatment of lung cancer. The results demonstrated enhanced cell death following combination treatment of SWNT/GO and Tx indicating a synergistic effect. In addition, synergism was abrogated in the presence of an anti-oxidant, N-acetyl cysteine (NAC), and was therefore shown to be reactive oxygen species (ROS) dependent. It was further demonstrated using bromodeoxyuridine (BrdU) incorporation assay that treatment with CNs was associated with enhanced mitogen associated protein kinase (MAPK) activation that was ROS mediated. Hence, these results for the first time demonstrated the potential of SWNT/GO as co-therapeutic agents with Tx for the treatment of lung cancer.
Resumo:
Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Background. Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH) 1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Methods. Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Results. Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine-phosphate-guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Conclusions. Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation-specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation.
Resumo:
A protocol to efficiently assess Reactive Oxygen Species (ROS) levels in yeast cells using H2DCF-DA is described here. This method employs lithium acetate to permeate the cell wall, and thus, augments the release of the fluorescent product, dichlorofluorescein from the cells. This protocol obviates the need for both physical and enzymatic lysis methods that are arduous and time consuming. This method is simple, less time consuming and reproducible, especially while dealing with a large sample size. The lithium acetate method gave significantly reproducible and linear results (P < 0.0001), as compared with direct measurement (P = 0.0005), sonication (P = 0.1466) and bead beating (P = 0.0028).