946 resultados para Rats as laboratory animals.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Os efeitos sedativos e antinociceptivos da levomepromazina, azaperone e midazolam foram avaliados utilizando-se três testes de comportamento em ratos e camundongos. No teste da atividade locomotora espontânea em campo aberto observou-se que tanto o comportamento exploratório como a atividade locomotora espontânea foram significativamente diminuídos quando se utilizou levomepromazina e azaperone. O efeito causado pelo azaperone foi menos prolongado quando comparado ao da levomepromazina. O midazolam causou diminuição do comportamento exploratório sem alterar a atividade locomotora espontânea. Quando se avaliou o efeito antinociceptivo por meio da latência para o reflexo da retirada da cauda em ratos após estímulo doloroso, as drogas não apresentaram nenhum efeito antinociceptivo observável. No teste das contorções em camundongos, os fármacos foram capazes de abolir as contorções quando comparados ao efeito do grupo-controle. Levomepromazina, azaperone e midazolam nas doses utilizadas foram capazes de inibir o comportamento exploratório de ratos, comprovando seus efeitos sedativos. Com relação aos efeitos antinociceptivos para dor visceral, eles foram capazes de inibir as contorções.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Both learning and basic biological mechanisms have been shown to play a role in the control of protein int^e. It has previously been shown that rats can adapt their dietary selection patterns successfully in the face of changing macronutrient requirements and availability. In particular, it has been demonstrated that when access to dietary protein is restricted for a period of time, rats selectively increase their consumption of a proteincontaining diet when it becomes available. Furthermore, it has been shown that animals are able to associate various orosensory cues with a food's nutrient content. In addition to the role that learning plays in food intake, there are also various biological mechanisms that have been shown to be involved in the control of feeding behaviour. Numerous studies have documented that various hormones and neurotransmitter substances mediate food intake. One such hormone is growth hormone-releasing factor (GRF), a peptide that induces the release of growth hormone (GH) from the anterior pituitary gland. Recent research by Vaccarino and Dickson ( 1 994) suggests that GRF may stimulate food intake by acting as a neurotransmitter in the suprachiasmatic nucleus (SCN) and the adjacent medial preoptic area (MPOA). In particular, when GRF is injected directly into the SCN/MPOA, it has been shown to selectively enhance the intake of protein in both fooddeprived and sated rats. Thus, GRF may play a role in activating protein consumption generally, and when animals have a need for protein, GRF may serve to trigger proteinseeking behaviour. Although researchers have separately examined the role of learning and the central mechanisms involved in the control of protein selection, no one has yet attempted to bring together these two lines of study. Thus, the purpose of this study is to join these two parallel lines of research in order to further our understanding of mechanisms controlling protein selection. In order to ascertain the combined effects that GRF and learning have on protein intake several hypothesis were examined. One major hypothesis was that rats would successfully alter their dietary selection patterns in response to protein restriction. It was speculated that rats kept on a nutritionally complete maintenance diet (NCMD) would consume equal amount of the intermittently presented high protein conditioning diet (HPCD) and protein-free conditioning diet (PFCD). However, it was hypothesized that rats kept on a protein-free maintenance diet (PFMD) would selectively increase their intake of the HPCD. Another hypothesis was that rats would learn to associate a distinct marker flavour with the nutritional content of the diets. If an animal is able to make the association between a marker flavour and the nutrient content of the food, then it is hypothesized that they will consume more of a mixed diet (equal portion HPCD and PFCD) with the marker flavour that was previously paired with the HPCD (Mixednp-f) when kept on the PFMD. In addition, it was hypothesized that intracranial injection of GRF into the SCN/MPOA would result in a selective increase in HPCD as well as Mixednp-t consumption. Results demonstrated that rats did in fact selectively increase their consumption of the flavoured HPCD and Mixednp-f when kept on the NCMD. These findings indicate that the rats successfully learned about the nutrient content of the conditioning diets and were able to associate a distinct marker flavour with the nutrient content of the diets. However, the results failed to support previous findings that GRF increases protein intake. In contrast, the administration of GRF significantly reduced consumption of HPCD during the first hour of testing as compared to the no injection condition. In addition, no differences in the intake of the HPCD were found between the GRF and vehicle condition. Because GRF did not selectively increase HPCD consumption, it was not surprising that GRF also did not increase MixedHP-rintake. What was interesting was that administration of GRF and vehicle did not reduc^Mixednp-f consumption as it had decreased HPCD consumption.
Resumo:
The use of natural active principals is widespread among a great proportion of the rural population, or by people who do not have easy access to medical assistance. These active principles are used as food or medicines, and even for purposes of contraception. It becomes necessary to establish a relationship between the folklore habits and current information on the nature of anti-fertility substances, and knowledge of their mechanisms. Anti-fertility agents may exert their actions in a number of areas, (hypothalamus, anterior pituitary, oviduct, uterus, and vagina), inhibiting synthesis and/or liberation of hormones (follicle-stimulating, luteinizing, and steroid hormones), ovulation, ovum transportation, and implantation process. Therefore, a review of literature was carried out, including of several plants used by women as abortifacient and anti-fertility agents to compare their effects with those obtained among laboratory animals.
Resumo:
PURPOSE: A microangiographical technique is described, which allows visualization of small and capillary blood vessels and quantification of fasciocutaneous blood vessels by means of digital computer analysis in very small laboratory animals. MATERIALS AND METHODS: The left carotid artery of 20 nu/nu mice was cannulated (26 gauge) and a mixture of gelatin, bariumsulfate, and green ink was injected according to standardized protocol. Fasciocutaneous blood vessels were visualized by digital mammography and analyzed for vessel length and vessel surface area as standardized units [SU] by computer program. RESULTS: With the described microangiography method, fasciocutaneous blood vessels down to capillary size level can be clearly visualized. Regions of interest (ROIs) can be defined and the containing vascular network quantified. Comparable results may be obtained by calculating the microvascular area index (MAI) and the microvascular length index (MLI), related to the ROIs size. Identical ROIs showed a high reproducibility for measured [SU] < 0.01 +/- 0.0012%. CONCLUSION: Combining microsurgical techniques, pharmacological knowledge, and modern digital image technology, we were able to visualize small and capillary blood vessels even in small laboratory animals. By using our own computer analytical program, quantification of vessels was reliable, highly reproducible, and fast.
Resumo:
"Contract No. AT(40-1)-Gen-33."
Resumo:
"Contract No. At-40-1-Gen-33."
Resumo:
Distributed by the Clearinghouse for Federal Scientific and Technical Information.
Resumo:
Loose-leaf; kept up by supplements.
Resumo:
References: p. 44-45.