980 resultados para Rate equation
Resumo:
A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.
Resumo:
A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.
Resumo:
Based oil rare equations of semiconductor laser, a symbolically-defined model for optical transmission system performance evaluation and network characterization in both time- and frequency domains is presented. The steady-state and small-signal characteristics, such as current-photon density curve, current-voltage curve, and input impedance, call be predicted from this model. Two important dynamic characteristics, second-order harmonic distortion and two-tone third-order intermodulation products, are evaluated under different driving conditions. Experiments show that the simulated results agree well with the published data. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers are numerically studied by rate equation models. Similar to the optical pump-probe experiment, the injection of double optical pulses is used to simulate the gain recovery of a weak continuous signal for the QD SOAs. The gain recoveries are fitted by a response function with multiple exponential terms. For the pulses duration of 10 ps, the gain recovery can be described by three exponential terms with the time constants, and for the pulse with the width of 150 fs, the gain recovery can be described by two exponential terms, the reason is that the short pulse does not consume lot of carriers.
Resumo:
A rate equation is developed for the liquid-phase oxidation of propionaldehyde with oxygen in the presence of manganese propionate catalyst in a sparged reactor. The equation takes into account diffusional limitations based on Brian's solution for mass transfer accompanied by a pseudo m-. nth-order reaction. Sauter-mean bubble diameter, gas holdup, interfacial area, and bubble rise velocity are measured, and rates of mass transfer within the gas phase and across the gas-liquid interface are computed. Statistically designed experiments show the adequacy of the equation. The oxidation reaction is zero order with respect to oxygen concentration, 3/2 order with respect to aldehyde concentration, and order with respect to catalyst concentration. The activation energy is 12.1 kcal/g mole.
Resumo:
The deformation behavior of an FeAl alloy processed by hot extrusion of water atomized powder has been investigated. Compression tests are performed in the temperature range 1073–1423 K and in the strain rate range 0.001–100 s−1 up to a true plastic strain of 0.5. The flow stress has been found to be strongly dependent on temperature as well as strain rate. The stress exponent in the power law rate equation is estimated to be in the range 7.0–4.0, decreasing with temperature. The activation energy for plastic flow in the range 1073–1373 K varies from 430 kJ mol−1 at low stresses to 340 kJ mol−1 at high stresses. However, it is fairly independent of strain rate and strain. The activation area has similarly shown a stress dependence and lies in the range 160–45b2. At 1423 K and at strain rates lower than 0.1 s−1 a strain rate sensitivity of 0.3 is observed with an associated activation energy of 375 kJ mol−1. The plastic flow in the entire range of temperature and strain rate investigated appears to be controlled by a diffusion mechanism. The results have revealed that it is possible to process the alloy by superplastic forming in the range 1373–1423 K at strain rates lower than 0.1 s−1.
Resumo:
The overall rate equation for a reaction sequence consisting of a pre-equilibrium and rate-determining steps should not be derived on the basis of the concentration of the intermediate product (X). This is apparently indicated by transition state theory (as the path followed to reach the highest energy transition state is irrelevant), but also proved by a straight-forward mathematical approach. The thesis is further supported by the equations of concurrent reactions as applied to the partitioning of X between the two competing routes (reversal of the pre-equilibrium and formation of product). The rate equation may only be derived rigorously on the basis of the law of mass action. It is proposed that the reactants acquire the overall activation energy prior to the pre-equilibrium, thus forming X in a high-energy state en route to the rate-determining transition state. (It is argued that conventional energy profile diagrams are misleading and need to be reinterpreted.) Also, these arguments invalidate the Michaelis-Menten equation of enzyme kinetics, and necessitate a fundamental revision of our present understanding of enzyme catalysis. (The observed ``saturation kinetics'' possibly arises from weak binding of a second molecule of substrate at the active site; analogous conclusions apply to reactions at surfaces).
Resumo:
3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)
Resumo:
Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.
Resumo:
We have analyzed the propagation rate of the chemical waves observed during the course of CO oxidation on a Ag/Pt(I 10) composite surface that were reported in our previous papers [Surf Interface Anal. 2001, 32, 179; J. Phys. Chem. B 2002, 106, 5645]. In all cases, the propagation rate v can be adequately fitted as v = v(0) + D-0/d, in which v(0) and D-0 are constants, and d is the distance between the reaction front of the chemical wave and the boundary from which the chemical wave originates. We propose that the surface species responsible for the formation of the chemical wave comes from two paths: the adsorption of molecules in the gas phase on the surface and the migration from the adjacent surface with different catalytic activity. v(0) corresponds to the contribution from the surface species due to the adsorption, and D-0/d to that of the surface species that migrates from the adjacent surface. The rate equation clearly suggests that the observed chemical wave results from the coupling between adjacent surfaces with different catalytic activities during the course of heterogeneous catalysis. These results, together with our previous reports, provide a good fundamental understanding of spillover, an important phenomenon in heterogeneous catalysis.
Resumo:
The morphology and crystal growth of poly(l-lactic acid), PLLA have been studied from the melt as a function of undercooling and molecular weight using hot stage microscopy. Attention has been given to the application of growth rate equation on the growth rate data of PLLA and thus various nucleation parameters have been calculated. The criteria of Regime I and Regime II types of crystallization has been applied for the evaluation of substrate lengths.
Resumo:
Auto-ignition temperature of polystyrene, poly(vinyl chloride) and carboxy terminated polybutadiene has been measured at various oxygen pressures (1-28 atm) in a high pressure differential thermal analysis assembly at a heating rate of 10°C/min. The exothermic peak appears between 250-350°C in polystyrene and poly(vinyl chloride) and between 150-200°C for carboxy terminated polybutadiene. Ignition appears to be controlled by in situ forma tion and degradation of polymeric peroxides. Inverse dependence of ignition temperature on oxygen pressure is explained by the rate equation which con siders that ignition of a particular sample, of a fixed geometry, occurs when gasification rate reaches a unique critical value.
Resumo:
Differential scanning calorimetry (DSC) has been used to obtain kinetic and nucleation parameters for polymer crystallization under a non-isothermal mode of operation. The available isothermal nucleation growth-rate equation has been modified for non-isothermal kinetic analysis. The values of the nucleation constant (K g ) and surface free energies (sgr, sgr e ) have been obtained for i-polybutene-1, i-polypropylene, poly(L-lactic acid), and polyoxymethylene and are compared with those obtained from isothermal kinetic analysis; a good agreement in both is seen.
Resumo:
Vapour phase oxidation of furfural over vanadium pentoxide catalyst was studied using an isothermal flow reactor in the temperature range of 220–280°C. Maleic anhydride and carbon dioxide are found to be formed from furfural by a parallel reaction scheme. The following rate equation based on the two-stage redox mechanism—the substance to be oxidized reduces the catalyst which in turn is reoxidized by oxygen from the feed—is found to explain the data satisfactorily.The reoxidation of the reduced catalyst was found to be the rate controlling step.