953 resultados para Rare-earth alloys and compounds
Resumo:
Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor- based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro- and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetisation vs. temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment FCC layer at the seed interface topped with a higher moment HCP layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetisation was found to drop with increasing unit cell size. In-situ annealed rare earth films exceeded the saturation magnetisation of a high-moment Fe65Co35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetisation and operating temperature.
Resumo:
The deepening of the studies on essentials of rare earth coordination catalyst brings about more and more reports on model compounds as active centre of the catalyst. Among them the most significant researches are those with identification of the crystal structures of compounds.
Resumo:
Research funded by the Army Research Laboratory (ARL), the Metallurgical and Materials Engineering Department at Montana Tech investigated various methods of extracting and refining rare earth elements (REEs) from mineral ores and concentrates. Extensive thermodynamic, thermogravimetric and differential thermal analyses were performed to evaluate the relative stabilities of various REE compounds in order to assess potential methods for selective separation and recovery of specific REEs. Conversion of rare earth oxides (REO) to rare earth chlorides or bromides is a possible initial step in pyrometallurgical and hydrometallurgical processing of REEs. REO can be converted to chlorides or bromides by roasting in the presence of a chloridizing or bromidizing reactant. (e.g. NH4Cl and NH4Br).
Resumo:
Giant magnetoresistance (GMR), which was until recently confined to magnetic layered and granular materials, as well as doped magnetic semiconductors, occurs in manganate perovskites of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth; A = divalent ion). These manganates are ferromagnetic at or above a certain value of x (or Mn4+ content) and become metallic at temperatures below the curie temperature, T-c. GMR is generally a maximum close to T-c or the insulator-metal (I-M) transition temperature, T-im. The T-c and %MR are markedly affected by the size of the A site cation, [r(A)], thereby affording a useful electronic phase diagram when T-c or T-im is plotted against [r(A)]. We discuss GMR and related properties of manganates in polycrystalline, thin-film, and single-crystal forms and point out certain commonalities and correlations. We also examine some unusual features in the electron-transport properties of manganates, in particular charge-ordering effects. Charge ordering is crucially dependent on [r(A)] or the e(g) band width, and the charge-ordered insulating state transforms to a metallic ferromagnetic state on the application of a magnetic field.
Resumo:
Charge ordering in rare earth manganates of the type Ln(0.5)A(0.5)MnO(3) (Ln = rare earth, A = alkaline earth) is highly sensitive to the average radius of the A-site cations, [r(A)]. Tn the small [r(A)] regime (e.g., Y0.5Ca0.5MnO3), charge ordering occurs in the paramagnetic state, the transformation to an antiferromagnetic state occurring at still lower temperatures. At moderate [r(A)] values (e.g., Nd0.5Sr0.5MnO3), a ferromagnetic metallic state transforms to a charge-ordered antiferromagnetic state with cooling. These two distinct types of charge ordering and associated properties are explained in terms of the variation of the exchange couplings J(FM) and J(AFM) with [r(A)] and the invariance of the single-ion Jahn-Teller energy with [r(A)]. A qualitative temperature-[r(A)] phase diagram, consistent with the experimental observations, has been constructed to describe the properties of the manganates in the different [r(A)] regimes. (C) 1997 Academic Press.
Resumo:
Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h(-1)) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.
Resumo:
Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h(-1)) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.
Resumo:
Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Ln = Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles).
Resumo:
In this paper, the effects of rare earth ions (La3+, Eu3+, Dy3+, Yb3+) and their complexes with calmodulin on the activity of lactate dehydrogenase (LDH) were investigated. The results reveal that whether binding with calmodulin or not, rare earth ions show a minor activation effects on LDH when their concentrations are less than 3 mu mol (.) L-1, but indicate some strong inhibitory effects on LDH activity when the concentrations are above 5 mu mol (.) L-1. Calmodulin, which is a calcium-dependent regulator, can stimulate LDH activity and release the inhibitory effects of rare earth ion. Diethylenetriamine pentaacetic acid(DTPA) and its derivatives bisdimethylamide-diethylenetriamine pentaacetic acid (DTPA-BDMA), bisisonicotinyl-diethylenetriamine pentaacetic acid (DTPA-BIN), which are often used as ligands to metal ions, inhibit LDH activity when their concentrations are above 5 mu mol (.) L-1. Calmodulin can also release their inhibitory effects at the same time.
Resumo:
Rare earth (III)-Asp-Arg and Ca(II)-Asp-Arg systems were studied by potentiometric titration under physiological conditon. The species of each system were determined. The distribution of Tb (III) and Ca(II) species was discussed, as well as in the quaternary system of Tb(III)-Ca(II)-Asp-Arg.
Resumo:
Ternary complexes of europium and terbium with paraaminobenzoic acid and 1,10-phenanthroline (Eu(p-ABA)(3). phen . 2H(2)O and Tb(p-ABA)(3). phen . 2H(2)O, where p-HABA = paraaminobenzoic acid and phen = 1,10-phenanthroline) were introduced into a silica matrix by sol-gel method. The luminescence behavior of the complexes in silica gels was studied in comparison with the. corresponding solid-state complexes by means of emission, excitation spectra, and Lifetimes. Within the range of effective dopant concentrations, the luminescence intensities of rare-earth complexes in silica gel increase with the increasing of their dopant concentration. The lifetimes of rare-earth ions (Eu3+ and-Tb3+) in silica gel doped with europium and terbium complexes become longer than those in pure complexes. Very small amounts of rare-earth complexes doped in silica gel matrix can exhibit excellent luminescence properties, (C) 1998 Elsevier Science Ltd.
Resumo:
Europium and terbium complexes with 1,10-phenanthroline were introduced into silica gel by the sol-gel method. The luminescence behavior of the complexes in silica gels was studied compared with the corresponding solid state complexes by means of emission, excitation spectra and lifetimes. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Binary and ternary complexes of europium and terbium with conjugated carboxylic acid (nicotinic acid and 3,4-furandicarboxylic acid) and 1,10-phenanthroline were introduced into silica gel by the sol-gel method. The luminescence behavior of the complexes in silica gels was studied compared with the corresponding solid state complexes by means of emission, excitation spectra and lifetimes. The result indicated that the rare earth ions (EU3+ and Tb3+) showed fewer emission lines and slightly lower emission intensities in the silica gel than those in pure rare earth complexes. The lifetimes of rare earth ions (EU3+ and Tb3+) in silica gel doped with rare earth complexes became longer than those in pure rare earth complexes. (C) 1998 Elsevier Science S.A.