980 resultados para Rapid Parallel Synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage-inducible defenses in plants are controlled in part by jasmonates, fatty acid-derived regulators that start to accumulate within 30 s of wounding a leaf. Using liquid chromatography-tandem mass spectrometry, we sought to identify the 13-lipoxygenases (13-LOXs) that initiate wound-induced jasmonate synthesis within a 190-s timeframe in Arabidopsis thaliana in 19 single, double, triple and quadruple mutant combinations derived from the four 13-LOX genes in this plant. All four 13-LOXs were found to contribute to jasmonate synthesis in wounded leaves: among them LOX6 showed a unique behavior. The relative contribution of LOX6 to jasmonate synthesis increased with distance from a leaf tip wound, and LOX6 was the only 13-LOX necessary for the initiation of early jasmonate synthesis in leaves distal to the wounded leaf. Herbivory assays that compared Spodoptera littoralis feeding on the lox2-1 lox3B lox4A lox6A quadruple mutant and the lox2-1 lox3B lox4A triple mutant revealed a role for LOX6 in defense of the shoot apical meristem. Consistent with this, we found that LOX6 promoter activity was strong in the apical region of rosettes. The LOX6 promoter was active in and near developing xylem cells and in expression domains we term subtrichomal mounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of strategies are emerging for the high throughput (HTP) expression of recombinant proteins to enable structural and functional study. Here we describe a workable HTP strategy based on parallel protein expression in E. coli and insect cells. Using this system we provide comparative expression data for five proteins derived from the Autographa californica polyhedrosis virus genome that vary in amino acid composition and in molecular weight. Although the proteins are part of a set of factors known to be required for viral late gene expression, the precise function of three of the five, late expression factors (lefs) 6, 7 and 10, is unknown. Rapid expression and characterisation has allowed the determination of their ability to bind DNA and shown a cellular location consistent with their properties. Our data point to the utility of a parallel expression strategy to rapidly obtain workable protein expression levels from many open reading frames (ORFs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple parallel synthesis and evaluation have been combined in order to identify new nitrogen heterocycles for the partitioning of minor actinides(III) such as americium(III) from lanthanides such as europium(Ill). An array of triazine-containing molecules was made using multiple parallel syntheses from diketones and amide hydrazides. An excess of each of the resulting purified reagents was dissolved in 1,1,2,2-tetrachloroethane containing 2-bromodecanoic acid, and equilibrated with an aqueous solution containing the radiotracers Eu-152 and Am-241 in nitric acid ([Eu] + [Am] < 400 nanomol dm(-3)). Gamma counting of the organic and aqueous phases led to the identification of several new reagents for the selective extraction of americium(III). In particular, 6-(2-pyridyl)-2-(5,6-dialkyl-1,2,4-triazaphenyl)pyridines were found to be effective reagents for the separation of americium(III) from europium(III), (SFAm/Eu was ca. 30 in [HNO3] = 0.013 mol/L).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel bicyclo-T nucleosides carrying a hydroxyl or a carboxymethyl substituent in C(6')-[alpha]-position were prepared and incorporated into oligodeoxynucleotides. During oligonucleotide deprotection the carboxymethyl substituent was converted into different amide substituents in a parallel way. Tm-measurements showed no dramatic differences in both, thermal affinity and mismatch discrimination, compared to unmodified oligonucleotides. The post-synthetic modification of the carboxymethyl substituent allows in principle for a parallel preparation of a library of oligonucleotides carrying diverse substituents at C(6'). In addition, functional groups can be placed into unique positions in a DNA double helix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Alpine lake whitefish (Coregonus lavaretus) species complex is a classic example of a recent radiation, associated with colonization of the Alpine lakes following the glacial retreat (less than 15 kyr BP). They have formed a unique array of endemic lake flocks, each with one to six described sympatric species differing in morphology, diet and reproductive ecology. Here, we present a genomic investigation of the relationships between and within the lake flocks. Comparing the signal between over 1000 AFLP loci and mitochondrial control region sequence data, we use phylogenetic tree-based and population genetic methods to reconstruct the phylogenetic history of the group and to delineate the principal centres of genetic diversity within the radiation. We find significant cytonuclear discordance showing that the genomically monophyletic Alpine whitefish clade arose from a hybrid swarm of at least two glacial refugial lineages. Within this radiation, we find seven extant genetic clusters centred on seven lake systems. Most interestingly, we find evidence of sympatric speciation within and parallel evolution of equivalent phenotypes among these lake systems. However, we also find the genetic signature of human-mediated gene flow and diversity loss within many lakes, highlighting the fragility of recent radiations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solution phase parallel synthesis involving reactions of Baylis-Hillman products of 3-substituted-5-isoxazolecarbaldehydes with nucleophiles and their in vivo antithrombotic evaluations are described along with the results of in vitro platelet aggregation inhibition assay of a few compounds. Results of the detailed evaluation of one of the compounds as an inhibitor of platelet aggregation are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 mu M), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 mu M). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G protein-coupled receptors, which are enzymatically cleaved to expose a truncated extracellular N terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease α-thrombin, is expressed in various tissues (e.g., platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. We have discovered a series of potent peptide-mimetic antagonists of PAR-1, exemplified by RWJ-56110. Spatial relationships between important functional groups of the PAR-1 agonist peptide epitope SFLLRN were employed to design and synthesize candidate ligands with appropriate groups attached to a rigid molecular scaffold. Prototype RWJ-53052 was identified and optimized via solid-phase parallel synthesis of chemical libraries. RWJ-56110 emerged as a potent, selective PAR-1 antagonist, devoid of PAR-1 agonist and thrombin inhibitory activity. It binds to PAR-1, interferes with PAR-1 calcium mobilization and cellular function (platelet aggregation; cell proliferation), and has no effect on PAR-2, PAR-3, or PAR-4. By flow cytometry, RWJ-56110 was confirmed as a direct inhibitor of PAR-1 activation and internalization, without affecting N-terminal cleavage. At high concentrations of α-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, albeit not in human platelets; whereas, at high concentrations of SFLLRN-NH2, RWJ-56110 blocked activation responses in both cell types. Thus, thrombin activates human platelets independently of PAR-1, i.e., through PAR-4, which we confirmed by PCR analysis. Selective PAR-1 antagonists, such as RWJ-56110, should serve as useful tools to study PARs and may have therapeutic potential for treating thrombosis and restenosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of 53 nitro derivatives rationally designed were obtained by parallel synthesis and screened against Leishmania donovani. Six compounds exhibited IC(50) values lower than standard drugs. Brief SAR analysis revealed that substitution is important to the activity. Nitrothiophene analogues were more potent than the nitrofuran ones. This was attributed to the ability of sulfur atoms in accommodating electrons from nitro group, which facilitate its reduction and therefore the formation of free radicals lethal to parasites. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Volvox carteri, a multi-celled green algae, can grow synchronously given a sixteen hour light period followed by an eight hour dark period, a cycle which is repeated for a 48 hour growth cycle total. Near the end of each light period, reproductive cells divide rapidly resulting in the differentiation of ceIls. When the dark period begins, this differentiation stops and the cells remain dormant with little protein synthesis or differentiation occurring. Immediately after the lights come back on, however, the cells again undergo rapid protein synthesis and complete their differentiation. Previous studies have concluded that Volvox carteri discontinue protein synthesis during the dark phase due to regulation at the translational level and not the transcriptional level. Therefore, the inhibition of protein synthesis does not lie in the transfer of the protein coding sequence from DNA to mRNA, but rather in the transfer of this information from the mRNA to the ribosomes. My research examined this translational regulation to determine the factor(s) causing the discontinuation of protein synthesis during the dark phase. Evidence from other research further suggests that the control of translation lies in the initiation step rather than the elongation step. Eukaryotic initiation factors aid in the binding of the ribosomal subunits to the mRNA to initiate protein synthesis. It is known that initiation factors can be modified by phosphorylation, regulating their activity. Therefore, my study focused upon isolating some of these initiation factors in order to determine whether or not such modifications are responsible for the inhibition of dark phase protein synthesis in Volvox carteri.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

North temperate fish in post-glacial lakes are textbook examples for rapid parallel adaptive radiation into multiple trophic specialists within individual lakes. Speciation repeatedly proceeded along the benthic – limnetic habitat axis, and benthic – limnetic sister species diverge in the number of gill rakers. Yet, the utility of different numbers of gill rakers for consuming benthic vs. limnetic food has only very rarely been experimentally demonstrated. We bred and raised families of a benthic – limnetic species pair of whitefish under common garden conditions to test whether these species (i) show heritable differentiation in feeding efficiency on zooplankton, and (ii) whether varia- tion in feeding efficiency is predicted by variation in gill raker numbers. We used zooplankton of three different size classes to investigate prey size dependency of divergence in feeding efficiency and to investigate the effect strength of variation in the number of gill rakers. Our results show strong interspecific differences in feeding efficiency. These differences are largest when fish were tested with the smallest zooplankton. Importantly, feeding efficiency is significantly positively correlated with the number of gill rakers when using small zooplankton, also when species identity is statistically controlled for. Our results support the hypothesis that a larger number of gill rakers are of adaptive significance for feeding on zooplankton and pro- vide one of the first experimental demonstrations of trait utility of gill raker number when fish feed on zooplankton. These results are consistent with the suggested importance of divergent selection driven feeding adaptation during adaptive radiation of fish in post-glacial lakes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the popularity of the positron emitting glucose analog, ($\sp{18}$F) -2-deoxy-2-fluoro-D-glucose (2FDG), for the noninvasive "metabolic imaging" of organs with positron emission tomography (PET), the physiological basis for the tracer has not been tested, and the potential of 2FDG for the rapid kinetic analysis of altered glucose metabolism in the intact heart has not been fully exploited. We, therefore, developed a quantitative method to characterize metabolic changes of myocardial glucose metabolism noninvasively and with high temporal resolution.^ The first objective of the work was to provide direct evidence that the initial steps in the metabolism of 2FDG are the same as for glucose and that 2FDG is retained by the tissue in proportion to the rate of glucose utilization. The second objective was to characterize the kinetic changes in myocardial glucose transport and phosphorylation in response to changes in work load, competing substrates, acute ischemia and reperfusion, and the addition of insulin. To assess changes in myocardial glucose metabolism isolated working rat hearts were perfused with glucose and 2FDG. Tissue uptake of 2FDG and the input function were measured on-line by external detection. The steady state rate of 2FDG phosphorylation was determined by graphical analysis of 2FDG time-activity curves.^ The rate of 2FDG uptake was linear with time and the tracer was retained in its phosphorylated form. Tissue accumulation of 2FDG decreased within seconds with a reduction in work load, in the presence of competing substrates, and during reperfusion after global ischemia. Thus, most interventions known to alter glucose metabolism induced rapid parallel changes in 2FDG uptake. By contrast, insulin caused a significant increase in 2FDG accumulation only in hearts from fasted animals when perfused at a sub-physiological work load. The mechanism for this phenomenon is not known but may be related to the existence of two different glucose transporter systems and/or glycogen metabolism in the myocardial cell.^ It is concluded that (1) 2FDG traces glucose uptake and phosphorylation in the isolated working rat heart; and (2) early and transient kinetic changes in glucose metabolism can be monitored with high temporal resolution with 2FDG and a simple positron coincidence counting system. The new method has revealed transients of myocardial glucose metabolism, which would have remained unnoticed with conventional methods. These transients are not only important for the interpretation of glucose metabolic PET scans, but also provide insights into mechanisms of glucose transport and phosphorylation in heart muscle. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spraying potato (Solanum tuberosum L.) leaves with arachidonic acid (AA) at 1500 μg mL−1 led to a rapid local synthesis of salicylic acid (SA) and accumulation of a SA conjugate, which was shown to be 2-O-β-glucopyranosylsalicylic acid. Radiolabeling studies with untreated leaves showed that SA was synthesized from phenylalanine and that both cinnamic and benzoic acid were intermediates in the biosynthesis pathway. Using radiolabeled phenylalanine as a precursor, the specific activity of SA was found to be lower when leaves were treated with AA than in control leaves. Similar results were obtained when leaves were fed with the labeled putative intermediates cinnamic acid and benzoic acid. Application of 2-aminoindan-2-phosphonic acid at 40 μm, an inhibitor of phenylalanine ammonia-lyase, prior to treatment with AA inhibited the local accumulation of SA. When the putative intermediates were applied to leaves in the presence of 2-aminoindan-2-phosphonic acid, about 40% of the expected accumulation of free SA was recovered, but the amount of the conjugate remained constant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heat shock proteins (HSPs) and antioxidants are key cellular defenses against stress. Seals routinely undergo protracted fasting, which is normally associated with physiological stress in other animals. We tested the hypotheses that (1) relative HSP70 protein abundance is higher in liver and blubber of fasting relative to suckling wild gray seal pups; (2) differences in HSP70 are mirrored in tissue superoxide dismutase (SOD) and catalase activity, as well as glutathione levels; (3) extracellular HSP70 correlates with hepatic and blubber HSP70 abundance; and (4) protein carbonylation, an index of oxidative damage, is lower in tissues with higher levels of these cellular stress markers. In contrast to our expectation, suckling pups had higher relative HSP70 abundance and glutathione levels in liver and blubber and higher hepatic catalase activity. Plasma HSP70 did not correlate with liver or blubber abundance of the protein. Suckling pups did not experience greater protein carbonylation, suggesting that cellular protective mechanisms prevent protein damage despite an apparent increase in cellular stress. SOD activity was not affected by nutritional state, but in blubber tissue, it was positively correlated with blubber thickness. Greater requirements for antioxidants and HSPs in suckling pups or in animals with thicker blubber could arise from rapid protein synthesis, high metabolic fuel availability, and/or exposure to lipophilic toxins. Developmental and nutritional changes in cellular defenses have important implications for gray seals’ susceptibility to additional stress exposure.