202 resultados para Rapakivi granites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite(U-Pb age 1406 Ma), Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga Sunsas/Aguapei orogeny. The six intra-plate rapakivi granite episodes in the southwestern part of the Amazonian craton form three broad periods of anorogenic magmatism that have age-correlative events composed of similar rocks and geologic environments in eastern Laurentia and Baltica, although the exact timing of magmatism appears slightly different. Recognition of lithologic and chronological correlations between various cratons provide important constraints to models explaining the interplay between rapakivi granite magmatism and deep crustal evolution of an early Mesoproterozoic supercontinent. They are, furthermore, important to plate tectonic models for the assembly, dispersal and reassembly of Amazonia, Laurentia and Baltica in the Mesoproterozoic and Neoproterozoic. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondonia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondonia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Barbara deposit (Rondonia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sri (+/-W, +/-Ta, +/-Nb), and base-metal suite (Zn-Cu-Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0-19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245-450 degreesC, and (2) aqueous solutions with low CO2, low to moderate salinity (0-14 wt.% NaCl eq.), which homogenize between 100 and 340 T. In the Santa Barbara deposit, the early inclusions are represented by (1) low-salinity (5-12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 T, and (2) low-salinity (0-3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320380 degreesC. Cassiterite, wolframite, columbite-tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0-6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100-260 degreesC) and characterizes the sulfide fluorite-sericite association in the Correas deposit. The late fluid in the Santa Barbara deposit has lower salinity (0-3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240-450 degreesC, and 1,0-2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (delta(18)O quartz from 9.9parts per thousand to 10.9parts per thousand, deltaDH(2)O from 4.13parts per thousand to 6.95parts per thousand) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 degreesC. In the Santa Barbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 degreesC, respectively), and that for the cassiterite-quartz-veins is 415 degreesC. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (delta(18)O(qtz-H2O)=5.5-6.1parts per thousand) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (delta(18)O(mica-H2O)=33-9.8parts per thousand) suggest mixing with meteoric water. Late muscovite veins (delta(18)O(qtz-H2O)=-6.4parts per thousand) and late quartz (delta(18)O(mica-H2O)=-3.8parts per thousand) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor coluChange in the redox conditions related to mixing-of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study brings new insights into the magmatic evolution of natural F-enriched peraluminous granitic systems. The Artjärvi, Sääskjärvi and Kymi granite stocks within the 1.64 Ga Wiborg rapakivi granite batholith have been investigated by petrographic, geochemical, experimental and melt inclusion methods. These stocks represent late-stage leucocratic and weakly peraluminous intrusive phases typical of rapakivi granites worldwide. The Artjärvi and Sääskjärvi stocks are multiphase intrusions in which the most evolved phase is topaz granite. The Kymi stock contains topaz throughout and has a well-developed zoned structure, from the rim to the center: stockscheider pegmatite equigranular topaz granite porphyritic topaz granite. Geochemically the topaz granites are enriched in F, Li, Be, Ga, Rb, Sn and Nb and depleted in Mg, Fe, Ti, Ba, Sr, Zr and Eu. The anomalous geochemistry and mineralogy of the topaz granites are essentially magmatic in origin; postmagmatic reactions have only slightly modified the compositions. The Kymi equigranular topaz granite shows the most evolved character, and the topaz granites at Artjärvi and Sääskjärvi resemble the less evolved porphyritic topaz granite of the Kymi stock. Stockscheiders are found at the roof contacts of the Artjärvi and Kymi stocks. The stockscheider at Artjärvi is composed of biotite-rich schlieren and pegmatite layers parallel to the contact. The schlieren layering is considered to have formed by velocity-gradient sorting mechanism parallel to the flow, which led to the accumulation of mafic minerals along the upper contact of the topaz granite. Cooling and contraction of the topaz granite formed fractures parallel to the roof contact and residual pegmatite magmas were injected along the fractures and formed the pegmatite layers. The zoned structure of the Kymi stock is the result of intrusion of highly evolved residual melt from deeper parts of the magma chamber along the fractured contact between the porphyritic granite crystal mush and country rock. The equigranular topaz granite and marginal pegmatite (stockscheider) crystallized from this evolved melt. Phase relations of the Kymi equigranular topaz granite have been investigated utilizing crystallization experiments at 100 to 500 MPa as a function of water activity and F content. Fluorite and topaz can crystallize as liquidus phases in F-rich peraluminous systems, but the F content of the melt should exceed 2.5 - 3.0 wt % to facilitate crystallization of topaz. In peraluminous F-bearing melts containing more than 1 wt % F, topaz and muscovite are expected to be the first F-bearing phases to crystallize at high pressure, whereas fluorite and topaz should crystallize first at low pressure. Overall, the saturation of fluorite and topaz follows the reaction: CaAl2Si2O8 (plagioclase) + 2[AlF3]melt = CaF2 (fluorite) + 2Al2SiO4F2 (topaz). The obtained partition coefficient for F between biotite and glass D(F)Bt/glass is 1.89 to 0.80 (average 1.29) and can be used as an empirical fluormeter to determine the F content of coexisting melts. In order to study the magmatic evolution of the Kymi stock, crystallized melt inclusions in quartz and topaz grains in the porphyritic and the equigranular topaz granites and the marginal pegmatite were rehomogenized and analyzed. The homogenization conditions for the melt inclusions from the granites were 700 °C, 300 MPa, and 24 h, and for melt inclusions from the pegmatite, 700 °C, 100 MPa, and 24/96 h. The majority of the melt inclusions is chemically similar to the bulk rocks (excluding H2O content), but a few melt inclusions in the equigranular granite show clearly higher F and low K2O contents (on average 11.6 wt % F, 0.65 wt % K2O). The melt inclusion compositions indicate coexistence of two melt fractions, a prevailing peraluminous and a very volatile-rich, possibly peralkaline. Combined petrological, experimental and melt inclusion studies of the Kymi equigranular topaz granite indicate that plagioclase was the liquidus phase at nearly water-saturated (fluid-saturated) conditions and that the F content of the melt was at least 2 wt %. The early crystallization of biotite and the presence of muscovite in crystallization experiments at 200 MPa contrasts with the late-stage crystallization of biotite and the absence of muscovite in the equigranular granite, indicating that crystallization pressure may have been lower than 200 MPa for the granite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chemical analyses for biotites and their host rocks from the Cabreúva (three facies) and Salto (five facies) intrusions from the multiple-centered rapakivi Itu Complex, State of São Paulo, Brazil, are presented and compared. The Cabreúva intrusion comprises different kinds of mainly even-grained biotite and hornblende-bearing syenogranites, monzogranites and quartz syenites and the Salto intrusion several types of mainly porphyritic biotite syenogranites, some of them hornblende-bearing. The biotites from the Salto intrusion (S-micas) show a more restricted composition than those from the Cabreúva intrusion (C-micas). This reflects the chemical variability of the two bodies which is smaller in the Salto intrusion and larger in the Cabreúva pluton. In the AlIV x Fet/(Fet+Mg) diagram the S- and C-micas show similar AlIV contents, around 2.2-2.3, but C-micas have higher Fet/(Fet+Mg) ratios (0.7-0.9) compared to those of S-micas (0.5-0.6). In the Mg:(Al+Fe+3+Ti):(Fe+2+Mn) diagram the S-micas are defined as Fe+2-biotites and the C-micas occupy the area between the Fe+2-biotites and the siderophyllite/lepidomelane fields, slightly overlapping the latter. In the Al2O3 × FeOt, MgO × FeOt, Al2O3 x MgO and Alt x Mg diagrams, the S-micas always lie on the calc-alkaline/alkaline boundary (or in the subalkaline field) whereas the C-micas systematically plot in the alkaline field, reflecting the higher alkalis content of the Cabreúva intrusion. In the Fet/(Fet+Mg) x SiO2 diagram, the S-micas lie on a smooth line whereas the C-micas from the different facies are separated by distinct chemical gaps reflecting the major or minor chemical overlapping of the facies from the Salto and Cabreúva intrusions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the chemical variability of the Late Precambrian Itu Rapakivi Province (IRP), State of São Paulo, SE Brazil, based on 187 selected analyses from the Itu, São Francisco, Sorocaba, Campina do Veado and Sguario/ Correa granites. The IRP has an almost uniform petrographic character conferred by the overall dominance of subalkaline biotite granites. Monzogranites (adamellites), granodiorites, quartz syenites, quartz monzonites are rare to very rare rock types and tonalites and quartz diorites are almost restricted to enclaves. Typical chemical features are the high FeO*/MgO ratio, a clustering of the K2O values between 4.5 and 6.0 wt.% and K2O/Na2O ratios which define the IRP as mildly potassic although more potassic rocks also occur. The overal Peacock Alkalinity Index is 54 defining the Province as alkali-calcic. In the Shand diagram the data cluster near the metaluminous/peraluminous boundary. Relationships between Nb, Rb and Y stress the within plate character of the IRP and the relationships between Rb, Ba and Sr reveal the importance of feldspar fractionation in magma evolution. The data also show an interbody and an intrabody chemical variability due to the variation in the composition of the crustal magma protoliths, as assigned by K/Rb relations. The presence of several magmatic cycles which built up the major intrusions reflects a magma ascent from collecting chambers successively drained and recharged, a feature in agreement with the clear link between the bodies and long lived, successively reactivated, transcurrent faults. Most of the chemical features of the IRP correspond to those of the classical Finnish rapakivi granites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Amazonian Craton comprises an Archean domain surrounded by four successively younger Proterozoic tectonic provinces. Within the Rio-Negro-Juruena province the Serra da Providencia Intrusive Suite (1.60 and 1.53 Ga) consists of A-type rapakivi granites, charnockites and mangerites genetically associated with diabase dikes, gabbros and amphibolites lites. The original mafic melts were derived from a depleted mantle source (epsilon(Nd(T)) + 2.5 to +2.8; epsilon(Sr(T)) - 12.1). Underplated mafic magma induced melting of a short-lived fielsic crust, thus originating coeval felsic-inafic magmatism in a continental intraplate setting. The Colorado Complex, assigned to the Rondonian-San Ignacio province, comprises 1.35-1.36 Ga intrusive bimodal magmatism represented by monzonite gneisses associated with amphibolite, gabbro and metadiabase dikes intercalated with metasediments with detrital zircon that yield U-Pb ages of 1.35 to 1.42 Ga. Mafic samples display juvenile signatures (epsilon(Nd(T)) 0.0 to +5.2; epsilon(Sr(T)) -5.0 to -30.7) and are less contaminated than the Serra da Previdencia and Nova Brasiladndia ones. The generation of the basaltic magma is related to the subduction of an oceanic slab below the peridotite wedge (intraoceanic arc setting). Fluids and/or small melts from the slab impregnated the mantle. The Nova Brasilandia Sequence (Sunsas-Aguapei province) comprises a metasedimentary sequence intruded by 1.10-1.02 Ga metadiabases, gabbros, meta-gabbros, and amphibolites associated with granitic plutons (bimodal magmatism). The original tholeiitic magmas, derived from a depleted source (epsilon(Nd(T)) = +3.1 to +5.0), in a proto-oceanic setting, underwent subsequent contamination by the host rocks, as indicated by the isotopic and trace element data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main Precambrian tectonic units of Uruguay include the Piedra Alta tectonostratigraphic terrane (PATT) and Nico Perez tectonostratigraphic terrane (NPTT), separated by the Sarandi del Yi high-strain zone. Both terranes are well exposed in the Rio de La Plata craton (RPC). Although these tectonic units are geographically small, they record a wide span of geologic time. Therefore improved geological knowledge of this area provides a fuller understanding of the evolution of the core of South America. The PATT is constituted by low-to medium-grade metamorphic belts (ca. 2.1 Ga); its petrotectonic associations such as metavolcanic units, conglomerates, banded iron formations, and turbiditic deposits suggest a back-arc or a trench-basin setting. Also in the PATT, a late to post-orogenic, arc-related layered mafic complex (2.3-1.9 Ga), followed by A-type granites (2.08 Ga), and finally a taphrogenic mafic dike swarm (1.78 Ga) occur. The less thoroughly studied NPTT consists of Palaeoproterozoic high-grade metamorphic sequences (ca. 2.2 Ga), mylonites and postorogenic and rapakivi granites (1.75 Ga). The Brasiliano-Pan African orogeny affected this terrane. Neoproterozoic cover occurs in both tectonostratigraphic terranes, but is more developed in the NPTT. Over the past 15 years, new isotopic studies have improved our recognition of different tectonic events and associated processes, such as reactivation of shear zones and fluids circulation. Transamazonian and Statherian tectonic events were recognized in the RPC. Based on magmatism, deformation, basin development and metamorphism, we propose a scheme for the Precambrian tectonic evolution of Uruguay, which is summarized in the first Palaeoproterozoic tectonic map of the Rio de La Plata craton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Amazonian craton in the Sao Felix do Xingu city, southeast region of the Para state, north of Brazil, hosts exceptionally well-preserved Paleoproterozoic bimodal magmatic units grouped in the Sobreiro and Santa Rosa formations. These formations are correlated to the Uatuma magmatic event, which is largely distributed in the Amazonian craton occupying more than 1,500,000 km(2). Geological mapping and petrographical observations reveal distinct spectra of volcanic facies in both formations. The basal calc-alkaline Sobreiro Formation is composed mainly of andesitic and dacitic lava flows and associated volcaniclastic facies of autoclastic origin, with subordinate pyroclastic flow deposits. This formation shows inferred eruption style that is similar to those in Flood Basalt Provinces, with rare scutulum-type lava shields. The upper A-type Santa Rosa Formation was generated by multicyclic explosive and effusive episodes predominantly associated with large fissures and is materialized by voluminous ignimbrites with subordinated ash-fall tuff, crystal tuff, lapilli-tuff, co-ignimbritic breccias, rhyolitic dikes and domes, and associated granitic porphyries and equigranular granitic intrusions. Ignimbrite and rhyolite dikes reveal conspicuous vertical flow pattern pointing to a fissure-controlled eruption, similar to Sierra Madre Occidental ignimbrite province. The proposed evolutionary model for the Sao Felix do Xingu units differs from those of other occurrences related to the Uatuma magmatic event in the Amazonian craton, characterized by predominance of A-type volcanism and contemporaneous granites. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the basis of geologic, petrologic, and U-Pb geochronologic data the basement rocks in the east-central part of the Rondonia Tin Province (RTP, southwestern Amazonian craton) are grouped into five lithologic associations: (1) tonalitic gneiss (1.75 Ga); (2) enderbitic granulite (1.73 Ga); (3) paragneiss; (4) granitic and charnockitic augen gneisses (1.57-1.53 Ga); and (5) fine-grained granitic gneiss and charnockitic granulite (1.43-1.42 Ga). The first three are related to development of the Paleoproterozoic Rio Negro-Juruena Province and represent the oldest crust in the region. The tonalitic gneisses and enderbitic granulites show calc-alkaline affinities and Nd isotopic compositions (initial epsilon(Nd) = +0-1 to -1.5; T-DM of 2.2-2.1 Ga) that suggest a continental arc margin setting for the original magmas. The paragneisses yield T-DM values of 2.2-2.1 Ga suggesting that source material was primarily derived from the Ventuari-Tapajos and Rio Negro-Juruena crusts, but detrital zircon ages and an intrusive granitoid bracket deposition between 1.67 and 1.57 Ga. The granitic and charnockitic augen gneisses show predominantly A-type and within-plate granite affinities, but also some volcanic arc granite characteristics. The initial epsilon(Nd) values (+0.6 to +2.0) indicate mixing of magmas derived from depleted mantle and older crustal sources. These rocks are correlated to the 1.60-1.53 Ga Serra da Providencia intrusive suite that reflects inboard magmatism coeval with the Cachoeirinha orogen located to the southeast. The fine-grained granitic gneiss and charnockitic granulites represent the first record of widespread magmatism at 1.43-1.42 Ga in northern Rondonia. Their geochemical signatures and the slightly positive initial epsilon(Nd) values (+0.7 to +1.2) are very similar to those of the most evolved granites of the calc-alkaline Santa Helena batholith farther southeast. U-Pb monazite and Sm-Nd whole-rock-garnet ages demonstrate that a high-grade tectonometa-morphic episode occurred in this region at 1.33-1.30 Ga. This episode attained upper-amphibolite conditions and is interpreted as the peak of the Rondonian-San Ignacio orogeny. The U-Pb and Sm-Nd data presented here and data published on rapakivi granites elsewhere indicate that the east-central part of the RTP is a poly-orogenic region characterized by successive episodes of magmatism, metamorphism, and deformation between 1.75 and 0.97 Ga. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Neoproterozoic granitogenesis related to the Central Mantiqueira Province comprise the calc alkaline to alkaline granitoid complexes of Sorocaba, San Francisco, São Roque, Ibiúna and Piedade. These complexes occur in a ruptil tectonic to tardi (Sn+3) event. The emplacement of the different facies in transtractives structures of the pull-apart type are characterized in the area by the main transcurrent shear zones of Taxaquara-Pirapora, Itu-Jundiuvira, Moreiras, Cangüera and Caucáia of ENE-WSW general direction. The massifs present complex internal architecture characterized by intrusions in restrict initial phase of intermediate equigranular nature. Also present a main phase of porfiroid monzo and sienogranite that fragments the previous phase, followed by lateral accretion of equi to inequigranular material, and in some cases by the accretion of late phases of circular bodies of porfiroid rapakivi granites, and a late to final phase of aplitic to pegmatitic composition. This magmatism grew with the intrusions of successive magmatic pulses, partially controlled by many reactivations of the shear zones. The REE also suggest that the magmatic phases are similar, synchronous and repetitive in four of the complexes in both domains, present in the São Francisco Complex. The crystallization starts from accretion processes, but compositionally quite different from the others. The variation in compositions and ages (TDM) for these granites reflect the derivation from different sources developed under different magmatic conditions, followed by processes of contamination that frequently occur in the crust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O SW do município de Presidente Figueiredo, localizado no Estado do Amazonas, Nordeste do Cráton Amazônico Central, Brasil, hospeda granitoides do tipo I de idade entre 1890 a 1898 Ma (Terra Preta Granito, Suíte Água Branca), hornblenda-sienogranitos do tipo A (Sienogranito Canoas da Suíte Mapuera), rochas vulcânicas ácidas à intermediárias (Grupo Iricoumé) e granitos rapakivi de idades entre 1883 a 1889 Ma (Granito São Gabriel da Suíte Mapuera), e rochas afins (quartzo-gabro-anortosito e diorito), além de quartzo-monzonito Castanhal, milonitos e hornfels. A fácies quartzo-diorito do granito Terra Preta foi formada por processos de mistura entre um dique quartzo-gabro sinplutônico e um granodiorito hornblenda. Glóbulos parcialmente assimilados de sienogranitos hornblenda Canoas e seus contatos com o granodiorito hornblenda Terra Preta sugerem que o sienogranito Canoas é um pouco mais jovem do que o Granito Terra Preta. Xenólitos do sienogranito Canoas no interior do Granito São Gabriel mostram que o granito é mais jovem do que o sienogranito Canoas. Novas evidências geológicas e petrográficas avançam na compreensão petrológica destas rochas e sugerem que, além de cristalização fracionada, assimilação e mistura de magma, desempenharam um papel importante, pelo menos em escala local, na evolução e variação composicionais dos plutons. Tal evidência é encontrada no Granito Terra Preta misturado com materiais quartzo-diorito, félsico associado ao sienogranito Canoas e nos enclaves microgranulares intermediários, que apresentam biotita e hornblenda primárias, além de dissolução plagioclásio, corrosão de feldspatos, mantos feldspatos alcalinos, segunda geração de apatita, e elevados teores xenocristais em enclaves intermediários formados a partir da fragmentação de intrusões máficas. Análises petrográficas mostram que um evento deformacional registrado na parte Ocidental da área de estudo (com deformação progressiva de E para W) é estimado entre o magmatismo pós-colisional de 1,90 Ga e as invasões do Granito São Gabriel e rochas afins máficas/intermediárias (intraplaca). No entanto, torna-se extremamente necessário obter idades absolutas para este evento metamórfico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 590-580 Ma Itu Granite Province (IGP) is a roughly linear belt of post-orogenic granite plutons similar to 60 km wide extending for some 350 km along the southern edge of the Apia-Guaxupe Terrane in southeastern Brazil. Typical components are subalkaline A-type granites (some with rapakivi texture) that crystallized at varied, but mostly strongly oxidizing conditions, and contrast with a coeval association of also oxidized high-K calc-alkaline granites in terms of major (e. g., lower Ca/Fe) and trace elements (higher Nb, Y, Zr). Mantle-derived magmas (such as those forming the LILE-rich Piracaia Monzodiorite, with epsilon(Nd(t)) = -7 to -10, (87)Sr/(86)Sr((t)) = 0.7045-0.7055) are inferred to derive from enriched subcontinental lithosphere modified during previous subduction, and may have played a role in the generation of the A-type granites, adding melts or fluids or both to the lower crust from which the latter were generated. The IGP is interpreted as a reflection of crust uplift and increased heat flux during ascent of hot, less dense asthenosphere after continental collision, probably reflecting breakoff of an oceanic slab coeval to the right-lateral accretion of a terrane related to the Mantiqueira Orogenic System.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rio Branco Rapakivi Batholith belongs to the Cachoeirinha Tectonic Domain, part of the Rio Negro-Juruena Geochronological Province located on the southwestern portion of the Amazonian Craton in Mato Grosso, Central Brasil. A systematic geological mapping on a 1:100.000 scale, coupled with petrographic and geochemical studies allowed to redefine this batholithic unit, to recognize faciological variations and to characterize the geochemical features of this rapakivi magmatism. The batholith is constituted by two major plutonic suites, the first forming a basic suite of fine-grained, equigranular, mesoto melanocratic gray to black lithotypes, with usually discontinuous porphyritic varieties located near the margins of the intrusion. The second one is characterized by acid to intermediate rocks constituted by porphyritic granites, in part granophyric, with rapakivi textures. They have K-feldspar phenocrysts of up to 4cm. Three distinct petrographic facies are recognized in this suite: 1. equigranular to pegmatitic monzogranites; 2. red rapakivi leuco-monzogranites; 3. dark red rapakivi monzogranites to quartz-monzonites. Rocks present SiO2 contents from 67% to 73%, show peraluminous to metaluminous compositions and define a high-K calc-alkaline to shoshonitic magmatism in an I- and A-type, post-orogenic to anorogenic intraplate environment. The magmatic processes are associated with the end of the collisional event that consolidated and stabilized the SW part of the Amazonian Craton.