234 resultados para Rangelands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key resource areas (KRAs), defined as dry season foraging zones for herbivores, were studied relative to the more extensive outlying rangeland areas (non-KRAs) in Kenya. Field surveys with pastoralists, ranchers, scientists and government officials delineated KRAs on the ground. Identified KRAs were mapped based on global positioning and local experts' information on KRAs accessibility and ecological attributes. Using the map of known KRAs and non-KRAs, we examined characteristics of soils, climate, topography, land use/cover attributes at KRAs relative to non-KRAs. How and why do some areas (KRAs) support herbivores during droughts when forage is scarce in other areas of the landscape? We hypothesized that KRAs have fundamental ecological and socially determined attributes that enable them to provide forage during critical times and we sought to characterize some of those attributes in this study. At the landscape level, KRAs took different forms based on forage availability during the dry season but generally occurred in locations of the landscape with aseasonal water availability and/or difficult to access areas during wet season forage abundance. Greenness trends for KRAs versus non-KRAs were evaluated with a 22-year dataset of Normalized Difference Vegetation Index (NDVI). Field surveys of KRAs provided qualitative information on KRAs as dry season foraging zones. At the scale of the study, soil attributes did not significantly differ for KRAs compared to non-KRAs. Slopes of KRA were generally steeper compared to non-KRAs and elevation was higher at KRAs. Field survey respondents indicated that animals and humans generally avoid difficult to access hilly areas using them only when all other easily accessible rangeland is depleted of forage during droughts. Understanding the nature of KRAs will support identification, protection and restoration of critical forage hotspots for herbivores by strengthening rangeland inventory, monitoring, policy formulation, and conservation efforts to improve habitats and human welfare. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-change science emphasizes the intimate linkages between the human and environmental components of land management systems. Recent theoretical developments in drylands identify a small set of key principles that can guide the understanding of these linkages. Using these principles, a detailed study of seven major degradation episodes over the past century in Australian grazed rangelands was reanalyzed to show a common set of events: (i) good climatic and economic conditions for a period, leading to local and regional social responses of increasing stocking rates, setting the preconditions for rapid environmental collapse, followed by (ii) a major drought coupled with a fall in the market making destocking financially unattractive, further exacerbating the pressure on the environment; then (iii) permanent or temporary declines in grazing productivity, depending on follow-up seasons coupled again with market and social conditions. The analysis supports recent theoretical developments but shows that the establishment of environmental knowledge that is strictly local may be insufficient on its own for sustainable management. Learning systems based in a wider community are needed that combine local knowledge, formal research, and institutional support. It also illustrates how natural variability in the state of both ecological and social systems can interact to precipitate nonequilibrial change in each other, so that planning cannot be based only on average conditions. Indeed, it is this variability in both environment and social subsystems that hinders the local learning required to prevent collapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, the spread and dominance of non-native plant species has been identified as a serious threat to rangeland biodiversity and ecosystem functioning. Rangelands extend over 70% of Australia’s land mass or more than 6 million km2. These rangelands consist of a diverse set of ecosystems including grasslands, shrub-lands, and woodlands spanning numerous climatic zones, ranging from arid to mesic. Because of the high economic, social, and environmental values, sustainable management of these vast landscapes is critical for Australia’s future. More than 2 million people live in these areas and major industries are ranching, mining, and tourism. In terms of biodiversity values, 53 of 85 of Australia’s biogeographical regions and 5 of 15 identified biodiversity hotspots are found in rangelands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Does the current global political economic framework, or more specifically, the cost-price squeeze associated with primary production, restrict the choices of Australian cattle graziers in moving to more sustainable practices? It has often been argued by primary producers and academics, alike, that current terms of trade have resulted in reduced profitability at the property level, and as such, have made it difficult for landholders to shift to practices which are environmentally sustainable. Whilst there is mounting evidence that this is case, there is also evidence that some graziers have been able to adapt to the prevailing market conditions through an ideological as well as ‘practice’ shift. Findings from qualitative research in Central Queensland, Australia has highlighted how ‘cell grazing’ departs from the traditional or conventional aspects of grazing which can be described as productivist, to an approach closely approximating Lang and Heasman’s (2004) ‘ecologically integrated paradigm’. It is argued that cell grazing is, at present, a marginal activity that requires an ideological and cultural shift, as well as an investment in new infrastructure, however, current cell grazing activities may also demonstrate that beef grazing has the potential to be both economically and environmentally sustainable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern about the risk of harmful human-induced climate change has resulted in international efforts to reduce greenhouse gas emissions to the atmosphere. We review the international and national context for consideration of greenhouse abatement in native vegetation management and discuss potential options in Queensland. Queensland has large areas of productive or potentially productive land with native woody vegetation cover with approximately 76 million ha with woody cover remaining in 1991. High rates of tree clearing, predominantly to increase pasture productivity, continued throughout the 1990s with an average 345,000 ha/a estimated to have been cleared, including non-remnant (woody regrowth) as well as remnant vegetation. Estimates of greenhouse gas emissions associated with land clearing currently have a high uncertainty but clearing was reported to contribute a significant proportion of Australia's total greenhouse gas emissions from 1990 (21%) to 1999 (13%). In Queensland, greenhouse emissions from land clearing were estimated to have been 54.5 Mt CO(2)-e in 1999. Management of native vegetation for timber harvesting and the proliferation of woody vegetation (vegetation thickening) in the grazed woodlands also represent large carbon fluxes. Forestry (plantations and native forests) in Queensland was reported to be a 4.4 Mt CO(2)-e sink in 1999 but there are a lack of comprehensive data on timber harvesting in private hardwood forests. Vegetation thickening is reported for large areas of the c. 60 million ha grazed woodlands in Queensland. The magnitude of the carbon sink in 27 million ha grazed eucalypt woodlands has been estimated to be 66 Mt CO(2)-e/a but this sink is not currently included in Australia's inventory of anthropogenic greenhouse emissions. Improved understanding of the function and dynamics of natural and managed ecosystems is required to support management of native vegetation to preserve and enhance carbon stocks for greenhouse benefits while meeting objectives of sustainable and productive management and biodiversity protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"The extended drought periods in each degradation episode have provided a test of the capacity of grazing systems (i.e. land, plants, animals, humans and social structure) to handle stress. Evidence that degradation was already occurring was identified prior to the extended drought sequences. The sequence of dry years, ranging from two to eight years, exposed and/or amplified the degradation processes. The unequivocal evidence was provided by: (a) the physical 'horror' of bare landscapes, erosion scalds and gullies and dust storms; (b) the biological devastation of woody weeds and animal suffering/deaths or forced sales, and; (c) the financial and emotional plight of graziers and their families due to reduced production in some cases leading to abandonment of properties or, sadly, deaths (e.g. McDonald 1991, Ker Conway 1989)."--Publisher website

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite recognition that non-native plant species represent a substantial risk to natural systems, there is currently no compilation of weeds that impact on the biodiversity of the rangelands within Australia. Using published and expert knowledge, this paper presents a list of 622 non-native naturalised species known to occur within the rangelands. Of these, 160 species (26%) are considered a current threat to rangeland biodiversity. Most of these plant species have been deliberately introduced for forage or other commercial use (e.g. nursery trade). Among growth forms, shrubs and perennial grasses comprise over 50% of species that pose the greatest risk to rangeland biodiversity. We identify regions within the rangelands containing both high biodiversity values and a high proportion of weeds and recommend these areas as priorities for weed management. Finally, we examine the resources available for weed detection and identification since detecting weeds in the early stages of invasion is the most cost effective method of reducing further impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, the development of rangelands has led to steady gains in pastoral productivity through more intensive and widespread land use (Stokes et al., 2006). Opportunities to benefit from intensification exist on large properties with relatively poor water and fencing infrastructure development, resulting in uneven utilisation of available forage (Ash et al.,2006). The objective of this study is to value expected economic gains from carrying out property improvements on a beef property located in Northern Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Burdekin Rangelands is a diverse area of semi-arid eucalypt and acacia savannah covering six million hectares in north eastern Australia. The major land use is cattle grazing on 220 commercial cattle properties (average size 26,000 ha) each carrying on average 2600 adult equivalents. Production was the focus of the beef industry and support agencies prior to the mid 1980's. Widespread land degradation during the 1980's led to a grassroots realisation that environmental impacts, including water quality had to be addressed for the beef industry to attain sustainability. The formation of a series of producer based landcare gropus and the support of several Queensland and Australian government research and extension agencies led to a greater awareness and adoption of sound grazing land management practices (Shepherd 2005).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid chromatography/mass spectrometry (MS)/MS was used to analyse toxins in P. trichostachia, P. simplex subsp. continua, P. simplex subsp. continua and P. elongata samples (flowers, seeds, branches, main stem, leaves and roots) collected from various locations in Queensland, Saskatchewan and New South Wales, Australia. Simplexin was the major analyte in all taxa, with varying minor levels of huratoxin. Simplexin levels in P. trichostachia and P. elongata were higher (580 and 540 mg/kg in flowering foliage, respectively) than in P. simplex (255 mg/kg). Levels of huratoxin were higher in P. simplex (relative to simplexin) than in P. trichostachia or P. elongata. P. simplex flower heads and roots contained similar simplexin levels, with very small amounts of toxins detected in branches, stems and leaves. In P. trichostachia, simplexin levels were high in flower heads but low in the the other plant parts. The simplexin levels in aerial parts were generally higher from the pre-flowering to the flowering stage, decreasing towards the post-flowering stage; similar trends were recorded for P.elongata samples collected from a site near Bollon and P. trichostachia samples collected from a site near Jericho (both sites in Queensland). The simplexin concentration in roots was much less variable. Flowers and seeds had much higher simplexin levels than the foliage. The breakdown of the toxin in litter was more rapid compared to seeds under the same weathering conditions. Unlike the results from the litter samples, no significant decrease occurred in seed samples after 18 months of exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On-going, high-profile public debate about climate change has focussed attention on how to monitor the soil organic carbon stock (C(s)) of rangelands (savannas). Unfortunately, optimal sampling of the rangelands for baseline C(s) - the critical first step towards efficient monitoring - has received relatively little attention to date. Moreover, in the rangelands of tropical Australia relatively little is known about how C(s) is influenced by the practice of cattle grazing. To address these issues we used linear mixed models to: (i) unravel how grazing pressure (over a 12-year period) and soil type have affected C(s) and the stable carbon isotope ratio of soil organic carbon (delta(13)C) (a measure of the relative contributions of C(3) and C(4) vegetation to C(s)); (ii) examine the spatial covariation of C(s) and delta(13)C; and, (iii) explore the amount of soil sampling required to adequately determine baseline C(s). Modelling was done in the context of the material coordinate system for the soil profile, therefore the depths reported, while conventional, are only nominal. Linear mixed models revealed that soil type and grazing pressure interacted to influence C(s) to a depth of 0.3 m in the profile. At a depth of 0.5 m there was no effect of grazing on C(s), but the soil type effect on C(s) was significant. Soil type influenced delta(13)C to a soil depth of 0.5 m but there was no effect of grazing at any depth examined. The linear mixed model also revealed the strong negative correlation of C(s) with delta(13)C, particularly to a depth of 0.1 m in the soil profile. This suggested that increased C(s) at the study site was associated with increased input of C from C(3) trees and shrubs relative to the C(4) perennial grasses; as the latter form the bulk of the cattle diet, we contend that C sequestration may be negatively correlated with forage production. Our baseline C(s) sampling recommendation for cattle-grazing properties of the tropical rangelands of Australia is to: (i) divide the property into units of apparently uniform soil type and grazing management; (ii) use stratified simple random sampling to spread at least 25 soil sampling locations about each unit, with at least two samples collected per stratum. This will be adequate to accurately estimate baseline mean C(s) to within 20% of the true mean, to a nominal depth of 0.3 m in the profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inter-annual rainfall variability is a major challenge to sustainable and productive grazing management on rangelands. In Australia, rainfall variability is particularly pronounced and failure to manage appropriately leads to major economic loss and environmental degradation. Recommended strategies to manage sustainably include stocking at long-term carrying capacity (LTCC) or varying stock numbers with forage availability. These strategies are conceptually simple but difficult to implement, given the scale and spatial heterogeneity of grazing properties and the uncertainty of the climate. This paper presents learnings and insights from northern Australia gained from research and modelling on managing for rainfall variability. A method to objectively estimate LTCC in large, heterogeneous paddocks is discussed, and guidelines and tools to tactically adjust stocking rates are presented. The possible use of seasonal climate forecasts (SCF) in management is also considered. Results from a 13-year grazing trial in Queensland show that constant stocking at LTCC was far more profitable and largely maintained land condition compared with heavy stocking (HSR). Variable stocking (VAR) with or without the use of SCF was marginally more profitable, but income variability was greater and land condition poorer than constant stocking at LTCC. Two commercial scale trials in the Northern Territory with breeder cows highlighted the practical difficulties of variable stocking and provided evidence that heavier pasture utilisation rates depress reproductive performance. Simulation modelling across a range of regions in northern Australia also showed a decline in resource condition and profitability under heavy stocking rates. Modelling further suggested that the relative value of variable v. constant stocking depends on stocking rate and land condition. Importantly, variable stocking may possibly allow slightly higher stocking rates without pasture degradation. Enterprise-level simulations run for breeder herds nevertheless show that poor economic performance can occur under constant stocking and even under variable stocking in some circumstances. Modelling and research results both suggest that a form of constrained flexible stocking should be applied to manage for climate variability. Active adaptive management and research will be required as future climate changes make managing for rainfall variability increasingly challenging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing need to understand what makes vegetation at some locations more sensitive to climate change than others. For savanna rangelands, this requires building knowledge of how forage production in different land types will respond to climate change, and identifying how location-specific land type characteristics, climate and land management control the magnitude and direction of its responses to change. Here, a simulation analysis is used to explore how forage production in 14 land types of the north-eastern Australian rangelands responds to three climate change scenarios of +3A degrees C, +17% rainfall; +2A degrees C, -7% rainfall; and +3A degrees C, -46% rainfall. Our results demonstrate that the controls on forage production responses are complex, with functional characteristics of land types interacting to determine the magnitude and direction of change. Forage production may increase by up to 60% or decrease by up to 90% in response to the extreme scenarios of change. The magnitude of these responses is dependent on whether forage production is water or nitrogen (N) limited, and how climate changes influence these limiting conditions. Forage production responds most to changes in temperature and moisture availability in land types that are water-limited, and shows the least amount of change when growth is restricted by N availability. The fertilisation effects of doubled atmospheric CO2 were found to offset declines in forage production under 2A degrees C warming and a 7% reduction in rainfall. However, rising tree densities and declining land condition are shown to reduce potential opportunities from increases in forage production and raise the sensitivity of pastures to climate-induced water stress. Knowledge of these interactions can be applied in engaging with stakeholders to identify adaptation options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainfall variability is a major challenge to sustainable grazing management in northern Australia, with management often complicated further by large, spatially-heterogeneous paddocks. This paper presents the latest grazing research and associated bio-economic modelling from northern Australia and assesses the extent to which current recommendations to manage for these issues are supported. Overall, stocking around the safe long-term carrying capacity will maintain land condition and maximise long-term profitability. However, stocking rates should be varied in a risk-averse manner as pasture availability varies between years. Periodic wet-season spelling is also essential to maintain pasture condition and allow recovery of overgrazed areas. Uneven grazing distributions can be partially managed through fencing, providing additional water-points and in some cases patch-burning, although the economics of infrastructure development are extremely context-dependent. Overall, complex multi-paddock grazing systems do not appear justified in northern Australia. Provided the key management principles outlined above are applied in an active, adaptive manner, acceptable economic and environmental outcomes will be achieved irrespective of the grazing system applied.