994 resultados para Range Images
Resumo:
Laser scanning is becoming an increasingly popular method for measuring 3D objects in industrial design. Laser scanners produce a cloud of 3D points. For CAD software to be able to use such data, however, this point cloud needs to be turned into a vector format. A popular way to do this is to triangulate the assumed surface of the point cloud using alpha shapes. Alpha shapes start from the convex hull of the point cloud and gradually refine it towards the true surface of the object. Often it is nontrivial to decide when to stop this refinement. One criterion for this is to do so when the homology of the object stops changing. This is known as the persistent homology of the object. The goal of this thesis is to develop a way to compute the homology of a given point cloud when processed with alpha shapes, and to infer from it when the persistent homology has been achieved. Practically, the computation of such a characteristic of the target might be applied to power line tower span analysis.
Resumo:
El artículo aborda el problema del encaje de diversas imágenes de una misma escena capturadas por escáner 3d para generar un único modelo tridimensional. Para ello se utilizaron algoritmos genéticos. ABSTRACT: This work introduces a solution based on genetic algorithms to find the overlapping area between two point cloud captures obtained from a three-dimensional scanner. Considering three translation coordinates and three rotation angles, the genetic algorithm evaluates the matching points in the overlapping area between the two captures given that transformation. Genetic simulated annealing is used to improve the accuracy of the results obtained by the genetic algorithm.
Resumo:
Tone Mapping is the problem of compressing the range of a High-Dynamic Range image so that it can be displayed in a Low-Dynamic Range screen, without losing or introducing novel details: The final image should produce in the observer a sensation as close as possible to the perception produced by the real-world scene. We propose a tone mapping operator with two stages. The first stage is a global method that implements visual adaptation, based on experiments on human perception, in particular we point out the importance of cone saturation. The second stage performs local contrast enhancement, based on a variational model inspired by color vision phenomenology. We evaluate this method with a metric validated by psychophysical experiments and, in terms of this metric, our method compares very well with the state of the art.
Resumo:
In this paper, we present a 3D face photography system based on a facial expression training dataset, composed of both facial range images (3D geometry) and facial texture (2D photography). The proposed system allows one to obtain a 3D geometry representation of a given face provided as a 2D photography, which undergoes a series of transformations through the texture and geometry spaces estimated. In the training phase of the system, the facial landmarks are obtained by an active shape model (ASM) extracted from the 2D gray-level photography. Principal components analysis (PCA) is then used to represent the face dataset, thus defining an orthonormal basis of texture and another of geometry. In the reconstruction phase, an input is given by a face image to which the ASM is matched. The extracted facial landmarks and the face image are fed to the PCA basis transform, and a 3D version of the 2D input image is built. Experimental tests using a new dataset of 70 facial expressions belonging to ten subjects as training set show rapid reconstructed 3D faces which maintain spatial coherence similar to the human perception, thus corroborating the efficiency and the applicability of the proposed system.
Resumo:
Despite that Critical Infrastructures (CIs) security and surveillance are a growing concern for many countries and companies, Multi Robot Systems (MRSs) have not been yet broadly used in this type of facilities. This dissertation presents a novel study of the challenges arisen by the implementation of this type of systems and proposes solutions to specific problems. First, a comprehensive analysis of different types of CIs has been carried out, emphasizing the influence of the different characteristics of the facilities in the design of a security and surveillance MRS. One of the most important needs for the surveillance of a CI is the detection of intruders. From a technical point of view this problem can be abstracted as equivalent to the Detection and Tracking of Mobile Objects (DATMO). This dissertation proposes algorithms to solve this specific problem in a CI environment. Using 3D range images of the environment as input data, two detection algorithms for ground robots have been developed. These detection algorithms provide a list of moving objects in the robot detection area. Direct image differentiation and computer vision techniques are used when the robot is static. Alternatively, multi-layer ground reconstructions are compared to detect the dynamic objects when the robot is moving. Since CIs usually spread over large areas, it is very useful to incorporate aerial vehicles in the surveillance MRS. Therefore, a moving object detection algorithm for aerial vehicles has been also developed. This algorithm compares the real optical flow obtained from a down-face oriented camera with an artificial optical flow computed using a RANSAC based homography matrix. Two tracking algorithms have been developed to follow the moving objects trajectories. These algorithms can efficiently handle occlusions and crossings, as well as exchange information among robots. The multirobot tracking can be applied to any type of communication structure: centralized, decentralized or a combination of both. Even more, the developed tracking algorithms are independent of the detection algorithms and could be potentially used with other detection procedures or even with static sensors, such as cameras. In addition, using the 3D point clouds available to the robots, a relative localization algorithm has been developed to improve the position estimation of a given robot with observations from other robots. All the developed algorithms have been extensively tested in different simulated CIs using the Webots robotics simulator. Furthermore, the algorithms have also been validated with real robots operating in real scenarios. In conclusion, this dissertation presents a multirobot approach to Critical Infrastructure Surveillance, mainly focusing on Detecting and Tracking Dynamic Objects.
Resumo:
New low cost sensors and open free libraries for 3D image processing are making important advances in robot vision applications possible, such as three-dimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a novel method for recognizing and tracking the fingers of a human hand is presented. This method is based on point clouds from range images captured by a RGBD sensor. It works in real time and it does not require visual marks, camera calibration or previous knowledge of the environment. Moreover, it works successfully even when multiple objects appear in the scene or when the ambient light is changed. Furthermore, this method was designed to develop a human interface to control domestic or industrial devices, remotely. In this paper, the method was tested by operating a robotic hand. Firstly, the human hand was recognized and the fingers were detected. Secondly, the movement of the fingers was analysed and mapped to be imitated by a robotic hand.
Resumo:
La percepción de profundidad se hace imprescindible en muchas tareas de manipulación, control visual y navegación de robots. Las cámaras de tiempo de vuelo (ToF: Time of Flight) generan imágenes de rango que proporcionan medidas de profundidad en tiempo real. No obstante, el parámetro distancia que calculan estas cámaras es fuertemente dependiente del tiempo de integración que se configura en el sensor y de la frecuencia de modulación empleada por el sistema de iluminación que integran. En este artículo, se presenta una metodología para el ajuste adaptativo del tiempo de integración y un análisis experimental del comportamiento de una cámara ToF cuando se modifica la frecuencia de modulación. Este método ha sido probado con éxito en algoritmos de control visual con arquitectura ‘eye-in-hand’ donde el sistema sensorial está compuesto por una cámara ToF. Además, la misma metodología puede ser aplicada en otros escenarios de trabajo.
Resumo:
New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.
Resumo:
Beyond the inherent technical challenges, current research into the three dimensional surface correspondence problem is hampered by a lack of uniform terminology, an abundance of application specific algorithms, and the absence of a consistent model for comparing existing approaches and developing new ones. This paper addresses these challenges by presenting a framework for analysing, comparing, developing, and implementing surface correspondence algorithms. The framework uses five distinct stages to establish correspondence between surfaces. It is general, encompassing a wide variety of existing techniques, and flexible, facilitating the synthesis of new correspondence algorithms. This paper presents a review of existing surface correspondence algorithms, and shows how they fit into the correspondence framework. It also shows how the framework can be used to analyse and compare existing algorithms and develop new algorithms using the framework's modular structure. Six algorithms, four existing and two new, are implemented using the framework. Each implemented algorithm is used to match a number of surface pairs. Results demonstrate that the correspondence framework implementations are faithful implementations of existing algorithms, and that powerful new surface correspondence algorithms can be created. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.
Resumo:
Los protocolos de medición antropométrica se caracterizan por la profusión de medidas discretas o localizadas, en un intento para caracterizar completamente la forma corporal del sujeto -- Dichos protocolos se utilizan intensivamente en campos como medicina deportiva, forense y/o reconstructiva, diseño de prótesis, ergonomía, en la confección de prendas, accesorios, etc -- Con el avance de algoritmos de recuperación de formas a partir de muestreos (digitalizaciones) la caracterización antropométrica se ha alterado significativamente -- El articulo presente muestra el proceso de caracterización digital de forma corpórea, incluyendo los protocolos de medición sobre el sujeto, el ambiente computacional - DigitLAB- (desarrollado en el CII-CAD-CAM-CG de la Universidad EAFIT) para recuperación de superficies, hasta los modelos geométricos finales -- Se presentan comparaciones de los resultados obtenidos con DigitLAB y con paquetes comerciales de recuperación de forma 3D -- Los resultados de DigitLAB resultan superiores, debido principalmente al hecho de que este toma ventaja de los patrones de las digitalizaciones (planares de contacto, por rejilla de pixels - range images -, etc.) y provee módulos de tratamiento geométrico - estadístico de los datos para poder aplicar efectivamente los algoritmos de recuperación de forma -- Se presenta un caso de estudio dirigido a la industria de la confección, y otros efectuados sobre conjuntos de prueba comunes en el ámbito científico para la homologación de algoritmos
Resumo:
Computer modelling has shown that electrical characteristics of individual pixels may be extracted from within multiple-frequency electrical impedance tomography (MFEIT) images formed using a reference data set obtained from a purely resistive, homogeneous medium. In some applications it is desirable to extract the electrical characteristics of individual pixels from images where a purely resistive, homogeneous reference data set is not available. One such application of the technique of MFEIT is to allow the acquisition of in vivo images using reference data sets obtained from a non-homogeneous medium with a reactive component. However, the reactive component of the reference data set introduces difficulties with the extraction of the true electrical characteristics from the image pixels. This study was a preliminary investigation of a technique to extract electrical parameters from multifrequency images when the reference data set has a reactive component. Unlike the situation in which a homogenous, resistive data set is available, it is not possible to obtain the impedance and phase information directly from the image pixel values of the MFEIT images data set, as the phase of the reactive reference is not known. The method reported here to extract the electrical characteristics (the Cole-Cole plot) initially assumes that this phase angle is zero. With this assumption, an impedance spectrum can be directly extracted from the image set. To obtain the true Cole-Cole plot a correction must be applied to account for the inherent rotation of the extracted impedance spectrum about the origin, which is a result of the assumption. This work shows that the angle of rotation associated with the reactive component of the reference data set may be determined using a priori knowledge of the distribution of frequencies of the Cole-Cole plot. Using this angle of rotation, the true Cole-Cole plot can be obtained from the impedance spectrum extracted from the MFEIT image data set. The method was investigated using simulated data, both with and without noise, and also for image data obtained in vitro. The in vitro studies involved 32 logarithmically spaced frequencies from 4 kHz up to 1 MHz and demonstrated that differences between the true characteristics and those of the impedance spectrum were reduced significantly after application of the correction technique. The differences between the extracted parameters and the true values prior to correction were in the range from 16% to 70%. Following application of the correction technique the differences were reduced to less than 5%. The parameters obtained from the Cole-Cole plot may be useful as a characterization of the nature and health of the imaged tissues.
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.
Resumo:
Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.
Resumo:
Introduction: Intraoperative EMG based neurophysiological monitoring is increasingly used to assist pedicle screw insertion. We carried out a study comparing the final screw position in the pedicle measured on CT images in relation to its corresponding intraoperative muscle compound action potential (CMAP) values. Material and methods: A total of 189 screws were inserted in thoracolumbar spines of 31 patients during instrumented fusion under EMG control. An observer, blinded to the CMAP value, assessed the horizontal and vertical 'screw edge to pedicle edge' distance perpendicular to the longitudinal axis of the screw on reformatted CT reconstructions using OsiriX software. These distances were analysed with their corresponding CMAP values. Data from 62 thoracic and 127 lumbar screws were processed separately. Interobserver reliability of distance measurements was assessed. Results: No patient suffered neurological injury secondary to screw insertion. Distance measurements were reliable (paired t-test, P = 0.13/0.98 horizontal/vertical). Two screws had their position altered due to low CMAP values suggesting close proximity of nerve tissue. Seventy five percent of screws had CMAP results above 10mA and had an average distance of 0.35cm (SD 0.23) horizontally and 0.46cm (SD 0.26) vertically from the pedicle edge. Additional 12% had a distance from the edge of the pedicle less than 0mm indicating cortical breach but had CMAP values above 10mA. A poor correlation between CMAP values and screw position was found. Discussion: In this study CMAP values above 10mA indicated correct screw position in the majority of cases. The zone of 10-20mA CMAP carries highest risk of a misplaced screw despite high CMAP value (17% of screws this CMAP range). In order to improve accuracy of EMG predictive value further research is warranted including improvement of probing techniques.