928 resultados para Random Number of Ancestors
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62M05
Resumo:
* Research supported by NATO GRANT CRG 900 798 and by Humboldt Award for U.S. Scientists.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classi cation: 60J80.
Resumo:
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals' explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants' explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people's interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.
Resumo:
Random number generation (RNG) is a functionally complex process that is highly controlled and therefore dependent on Baddeley's central executive. This study addresses this issue by investigating whether key predictions from this framework are compatible with empirical data. In Experiment 1, the effect of increasing task demands by increasing the rate of the paced generation was comprehensively examined. As expected, faster rates affected performance negatively because central resources were increasingly depleted. Next, the effects of participants' exposure were manipulated in Experiment 2 by providing increasing amounts of practice on the task. There was no improvement over 10 practice trials, suggesting that the high level of strategic control required by the task was constant and not amenable to any automatization gain with repeated exposure. Together, the results demonstrate that RNG performance is a highly controlled and demanding process sensitive to additional demands on central resources (Experiment 1) and is unaffected by repeated performance or practice (Experiment 2). These features render the easily administered RNG task an ideal and robust index of executive function that is highly suitable for repeated clinical use.
Resumo:
Comparou-se o número de ovaríolos de operárias de abelhas Apis mellifera L. de 36 colônias de retrocruzamentos (Africanizadas e Italianas) e operárias de colônias ancestrais parentais, endocruzadas e híbridas (F1). Não houve diferença no número de ovaríolos dos ovários direito e esquerdo das operárias. As abelhas híbridas da geração F1 apresentaram de 2 a 31 ovaríolos. O número de ovaríolos nas operárias dos retrocruzamentos africanizados variou de 2 a 56 e nos retrocruzamentos italianos de 2 a 117. A grande variação no número de ovaríolos das abelhas dos retrocruzamentos deveu-se a variabilidade observada na geração parental (abelhas africanizadas: 2 - 16; italianas: 6 - 26) e no F1 (2 - 31).
Resumo:
The problem of estimating the numbers of motor units N in a muscle is embedded in a general stochastic model using the notion of thinning from point process theory. In the paper a new moment type estimator for the numbers of motor units in a muscle is denned, which is derived using random sums with independently thinned terms. Asymptotic normality of the estimator is shown and its practical value is demonstrated with bootstrap and approximative confidence intervals for a data set from a 31-year-old healthy right-handed, female volunteer. Moreover simulation results are presented and Monte-Carlo based quantiles, means, and variances are calculated for N in{300,600,1000}.
Resumo:
We describe a Bayesian method for estimating the number of essential genes in a genome, on the basis of data on viable mutants for which a single transposon was inserted after a random TA site in a genome,potentially disrupting a gene. The prior distribution for the number of essential genes was taken to be uniform. A Gibbs sampler was used to estimate the posterior distribution. The method is illustrated with simulated data. Further simulations were used to study the performance of the procedure.
Resumo:
Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.
Resumo:
2000 Mathematics Subject Classification: 05A16, 05A17.