395 resultados para Rana palmipes
Resumo:
Se estudiaron veinticuatro ejemplares de la rana neotropical rana palmipes spix, con el fin de conocer si una población de ranas que habita en aguas de contenido de cloruro de sodio mayor que el normal poseen una habilidad mas alta para concentrar sal, que una población que habita en agua de menor concentración. Las normalidades del agua en los dos sitios de colección tuvieron valores muy próximas para llegar a conclusiones definitivas. Sin embargo, en base de la información obtenida, se concluye que las ranas que viven en el agua de salinidad mas alta están eliminando orina con un contenido de sal parecido a las ranas que viven en agua mas dulce, y que por eso se supone que las ranas que viven en agua de mayor salinidad puedan eliminar mas orina por unidad del tamaño del cuerpo.
Resumo:
The ongoing climate change along with increasing levels of pollutants, diseases, habitat loss and fragmentation constitute global threats to the persistence of many populations, species and ecosystems. However, for the long-term persistence of local populations, one of the biggest threats is the intrinsic loss of genetic variation. In order to adapt to changes in the environment, organisms must have a sufficient supply of heritable variation in traits important for their fitness. With a loss of genetic variation, the risk of extinction will increase. For conservational practices, one should therefore understand the processes that shape the genetic population structure and also the broader (historical) phylogenetic patterning of the species in focus. In this thesis, microsatellite markers were applied to study genetic diversity and population differentiation of the protected moor frog (Rana arvalis) in Fennoscandia from both historical (evolutionary) and applied (conservation) perspectives. The results demonstrate that R. arvalis populations are highly structured over rather short geographic distances. Moreover, the results suggest that R. arvalis recolonized Fennoscandia from two directions after the last ice age. This has had implications for the genetic structuring and population differentiation, especially in the northernmost parts where the two lineages have met. Compared to more southern populations, the genetic variation decreases and the interpopulation differentiation increases dramatically towards north. This could be an outcome of serial population bottlenecking along the recolonization route. Also, current isolation and small population sizes increase the effect of drift, thus reinforcing the observed pattern. The same pattern can also be seen in island populations. However, though R. arvalis on the island of Gotland has lost most of its neutral genetic variability, our results indicate that the levels of additive genetic variation have remained high. This conforms to the conjecture that though neutral markers are widely used in conservation purposes, they may be quite uninformative about the levels of genetic variation in ecologically important traits. Finally, the evolutionary impact of the typical amphibian mating behaviour on genetic diversity was investigated. Given the short time available for larval development, it is important that mating takes place as early as possible. The genetic data and earlier capture-recapture data suggest that R. arvalis gather at mating grounds they are familiar with. However, by forming leks in random to relatedness, and having multiple paternities in single clutches, the risk of inbreeding may be minimized in this otherwise highly philopatric species.
Resumo:
Comparative studies of the structure and regeneration of tissues in different vertebrates make it possible to get ideas from the evolution and regeneration potential of tissues. In this study are considered the reactive changes in the liver of larvae of the amphibian Rana temporaria to CC14 of different concentrations. Tadpoles of different sizes and different growth were placed once each day every day in a vessel with a determined solution of CC14 in water. The liver of tadpoles has a distinctive structure. It is distinguished by structure not only from the liver of higher vertebrates, but also from the liver of the adult frogs. The liver of the latter has an insignificant amount of fat and a whole series of other characters not typical of the liver of the tadpole. Placing the tadpoles in a solution of CCl4 with a concentration of 0.1% did not produce in the liver noticeable morphological changes. The author concludes that the absence of degenerative changes in the liver tadpoles, in spite of a high percentage of death of the experimental animals, tells of the well-known resistance of their liver to the influence of CC14.
Resumo:
The growth performance of a predatory snakehead, Channa striatus was tested by supplying tadpoles of Rana tigrina and fingerlings of Puntius gonionotus and Labeo rohita as prey for a period of 21 days in aquaria. Prey consumption by C. striatus was significantly different (P<0.05) for different prey used (T1 - R. tigrina, T2 - P. gonionotus, T3 - L. rohita). Tadpoles of R. tigrina were preferred by the predator (C. striatus) over P. gonionotus and L. rohita although tadpole is nutritionally inferior to each of P. gonionotus and L. rohita. Each predator rayed on 50-330 mg per day per g of their body weight. Fish preyed on tadpoles also showed the highest growth. Significant difference in weight gain was found between T1 and T2 and also between T1 and T3 but no difference was found between T2 and T3. Food conversion ratio (FCR) was found to be lowest in treatment T3 followed by the treatments T2 and T1 respectively.
Resumo:
Two antimicrobial peptides manifested a broad spectrum of anti microbial activity against various microorganisms have been isolated from skin secretions of Rana grahami. These antimicrobial peptides were named grahamin 1 and grahamin 2. Their primary Stru
Resumo:
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Guizhou region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the Yunnan frog, Rana pleuraden. Members
Resumo:
Many neuroendocrine peptides that are distributed in amphibian gastrointestinal tract and central nervous system are also found in amphibian skins, and these peptides are classified into skin-gut-brain triangle peptides, such as bombesins, gastrin-releasi
Resumo:
A bradykinin-like peptide has been isolated from the skin secretions of the frog Rana nigrovittata. This peptide was named ranakinin-N. Its primary structure, RAEAVPPGFTPFR, was determined by Edman degradation and mass spectrometry. It is structurally related to bradykinin-like peptides identified from skin secretions of other amphibians. Ranakinin-N is composed of 13 amino acid residues and is related to the bradykinin identified from the skin secretions of Odorrana schmackeri, which is composed of 9 amino acid residues. Ranakinin-N was found to exert concentration-dependent contractile effects on isolated guinea pig ileum. cDNA sequence encoding the precursor of ranakinin-N was isolated from a skin cDNA library of R. nigrovittata. The amino acid sequences deduced from the cDNA sequences match well with the results from Edman degradation. Analysis of different amphibian bradykinin cDNA structures revealed that the deficiency of a 15-nucleotide fragment (agaatgatcagacgc in the cDNA encoding bradykinin from O. schmackeri) in the peptide-coding region resulted in the absence of a dibasic site for trypsin-like proteinases and an unusual -AEVA- insertion in the N-terminal part of ranakinin-N. The -AEAV- insertion resulted in neutral net charge at the N-terminus of ranakinin-N. Ranakinin-N is the first reported bradykinin-like peptide with a neutral net charge at the N-terminus. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Much attention has been paid on amphibian peptides for their wide-ranging pharmacological properties, clinical potential, and gene-encoded origin. More than 300 antimicrobial peptides (AMPs) from amphibians have been studied. Peptidomics and genomics analysis combined with functional test including microorganism killing, histamine-releasing, and mast cell degranulation was used to investigate antimicrobial peptide diversity. Thirty-four novel AMPs from skin secretions of Rana nigrovittata were identified in current work, and they belong to 9 families, including 6 novel families. Other three families are classified into rugosin, gaegurin, and temporin family of amphibian AMP, respectively. These AMPs share highly conserved preproregions including signal peptides and spacer acidic peptides, while greatly diversified on mature peptides structures. In this work, peptidomics combined with genomics analysis was confirmed to be an effective way to identify amphibian AMPs, especially novel families. Some AMPs reported here will provide leading molecules for designing novel antimicrobial agents. (C) 2009 Elsevier Inc. All rights reserved
Resumo:
Based on partial sequences of the 12S and 16S ribosomal RNA genes, we estimated phylogenetic relationships among brown frogs of the Rana temporaria group from China. From the phylogenetic trees obtained, we propose to include Rana zhengi in the brown frog
Resumo:
An essential for respiration and viability (ERV1) homologue, 88R, was cloned and characterized from Rana grylio virus (RGV). Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed a highly conserved motif shared by all ERV1 family proteins: Cys-X-X-Cys. RT-PCR and western blot analysis revealed that 88R begins to transcribe and translate at 6 h postinfection (p.i.) and remains detectable at 48 h p.i. during RGV infection course. Furthermore, using drug inhibition analysis by a de novo protein synthesis inhibitor and a viral DNA replication inhibitor, RGV 88R was classified as a late (L) viral gene during the in vitro infection. 88R-EGFP fusion protein was observed in both the cytoplasm and nucleus of pEGFP-N3-88R transfected EPC cells. Although result of immunofluorescence is similar, 88R protein was not detected in viromatrix. Moreover, function of RGV 88R on virus replication were evaluated by RNAi assay. Nevertheless, effect of knockdown of RGV 88R expression on virus replication was not detected in cultured fish cell lines. Collectively, current data indicate that RGV 88R was a late gene of iridovirus encoding protein that distributed both the cytoplasm and nucleus.
Resumo:
The presence of thymidine kinase (TK) is a feature of many large DNA viruses. Here, a TK gene homologue was cloned and characterized from Rana grylio virus (RGV), a member of family Iridoviridae. RGV TK encodes a protein of 195 aa with a predicted molecular mass of 22.1 kDa. Homologues of the protein were present in all the currently sequenced iridoviruses, and phylogenetic analysis showed that it was much close to cellular TK type 2 (TK2), deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Subsequently, Western blotting revealed TK expression increased with time from 6 h post-infection in RGV-infected cells. Using drug inhibition analysis by protein synthesis inhibitor (cycloheximide) and DNA replication inhibitor (cytosine arabinofuranoside), RGV TK was classified as the early expression gene during in vitro infection. Subcellular localization by TK-GFP fusion protein expression and immunofluorescence staining showed RGV TK was an exclusively cytoplasmic protein in fish cells. Collectively, current data indicate that RGV TK was an early gene of iridovirus which encoded a cytoplasmic protein in fish cells.
Resumo:
Viral envelope proteins have been proposed to play significant roles in virus infection and assembly. In this study, an envelope protein gene, 53R, was cloned and characterized from Rana grylio virus (RGV), a member of the family Iridoviridae. Database searches found its homologues in all sequenced iricloviruses, and sequence alignment revealed several conserved structural features shared by virus capsid or envelope proteins: a myristoylation site, two predicted transmembrane domains and two invariant cysteine residues. Subsequently, RT-PCR and Western blot detection revealed that the transcripts encoding RGV 53R and the protein itself appeared late during infection of fathead minnow cells and that their appearance was blocked by viral DNA replication inhibitor, indicating that RGV 53R is a late expression gene. Moreover, immunofluorescence localization found an association of 53R with virus factories in RGV-infected cells, and this association was further confirmed by expressing a 53R-GFP fusion protein in pEGFP-N3/53R-transfected cells. Furthermore, detergent extraction and Western blot detection confirmed that RGV 53R was associated with virion membrane. Therefore, the current data suggest that RGV 53R is a novel viral envelope protein and that it may play an important role in virus assembly. This is thought to be the first report on a viral envelope protein that is conserved in all sequenced iridoviruses.