998 resultados para Raman crystal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

简要介绍了固体拉曼激光器的研究现状,总结了几种常用的同体拉曼晶体[LiIO3,Ba(NO3)2,CaWO4]的受激拉曼实验特性,并对如何设计各种形式的拉曼激光装置以取得良好的频率转换做了分析。最后对同体拉曼激光器的发展做了展望。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Th(BrO3)3·H2O single crystals were grown from its aqueous solution at room temperature. Single crystal XRD, Raman and FTIR techniques were used to investigate the crystal structure. The crystal structure was solved by Patterson method. The as grown crystals are in monoclinic system with space group P21/c. The unit cell parameters are a = 12.8555(18) Å, b = 7.8970(11) Å, c = 9.0716(10) Å,  = 90°,  = 131.568° and  = 90° and unit cell volume is 689.1(2) Å3. Z = 8, R factor is 5.9. The Raman and FTIR studies indicate the lowering of symmetry of bromate anion from C3V to C1. Hydrogen bonds with varying strengths are present in the crystal. The centrosymmetric space group P21/c of the crystal is confirmed by the non-coincidence of majority of Raman and IR bands

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Raman spectra at 77 K of the hydroxyl stretching of kaolinite were obtained along the three axes perpendicular to the crystal faces. Raman bands were observed at 3616, 3658 and 3677 cm−1 together with a distinct band observed at 3691 cm−1 and a broad profile between 3695 and 3715 cm−1. The band at 3616 cm−1 is assigned to the inner hydroxyl. The bands at 3658 and 3677 cm−1 are attributed to the out-of-phase vibrations of the inner surface hydroxyls. The Raman spectra of the in-phase vibrations of the inner-surface hydroxyl-stretching region are described in terms of transverse and longitudinal optic splitting. The band at 3691 cm−1 is assigned to the transverse optic and the broad profile to the longitudinal optic mode. This splitting remained even at liquid nitrogen temperature. The transverse optic vibration may be curve resolved into two or three bands, which are attributed to different types of hydroxyl groups in the kaolinite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The oriented single crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross-polarised spectra are identical. Band assignments were made with respect to bridging and non-bridging As-O bonds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The single crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2 respectively, and the non-aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise of alternating layers of [Sb(OH)6]-1 octahedra and mixed [M(H2O)6]+2 / [Sb(OH)6]-1 octahedra. Mopungite comprises hydrogen bonded layers of [Sb(OH)6]-1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb-O symmetric stretch of the [Sb(OH)6]-1 octahedron, which occurs at approximately 620 cm-1. The Raman spectrum of mopungite showed many similarities to spectra of the di-octahedral minerals informing the view that the Sb octahedra gave rise to most of the Raman bands observed, particularly below 1200 cm-1. Assignments have been proposed based on the spectral comparison between the minerals, prior literature and density field theory calculations of the vibrational spectra of the free [Sb(OH)6]-1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6-31G(d) and lanl2dz for the Sb atom. The single crystal data spectra showed good mode separation, allowing the majority of the bands to be assigned a symmetry species of A or E.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The single crystal Raman spectra of natural mineral schafarzikite FeSb2O4 from the Pernek locality of the Slovak Republic are presented for the first time. Raman spectra of natural mineral apuanite Fe2+Fe43+Sb4O12S, originating from the Apuan Alps in Italy, as well as spectra of synthetic ZnSb2O4 and arsenite mineral trippkeite CuAs2O4 are also presented for the first time. The spectra of the antimonite minerals are characterized by a strong band in the region 660 – 680 cm-1 with shoulders on either side, and a band of medium intensity near 300 cm-1. The spectrum of the arsenite mineral is characterized by a medium band near 780 cm-1 with a shoulder on the high wavenumber side and a strong band at 370 cm-1. Assignments are proposed based on the spectral comparison between the compounds, symmetry modes of the bands and prior literature. The single crystal spectra of schafarzikite showed good mode separation, allowing bands to be assigned a symmetry species of A1g, B1g, B2g or Eg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis concentrates on the characterisation of selected arsenite, antimonite, and hydroxyantimonate minerals based on their vibrational spectra. A number of natural arsenite and antimonite minerals were studied by single crystal Raman spectroscopy in order to determine the contribution of bridging and terminal oxygen atoms to the vibrational spectra. A series of natural hydrated antimonate minerals was also compared and contrasted using single crystal Raman spectroscopy to determine the contribution of the isolated antimonate ion. The single crystal data allows each band in the spectrum to be assigned to a symmetry species. The contribution of bridging and terminal oxygen atoms in the case of the arsenite and antimonite minerals was determined by factor group analysis, the results of which are correlated with the observed symmetry species. In certain cases, synthetic analogues of a mineral and/or synthetic compounds isostructural or related to the mineral of interest were also prepared. These synthetic compounds are studied by non-oriented Raman spectroscopy to further aid band assignments of the minerals of interest. Other characterisation techniques include IR spectroscopy, SEM and XRD. From the single crystal data, it was found that good separation between different symmetry species is observed for the minerals studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The single crystal Raman spectra of natural mineral finnemanite Pb5(AsO3)3Cl from the Långban locality, Filipstad district, Värmland province, Sweden are presented for the first time. It is a hexagonal mineral belonging to the ortho arsenite group, where the [AsO3]3- ion is isolated. The spectra of finnemanite are characterized by a strong band at 734 cm-1 overlying a shoulder at 726 cm-1, and broad overlapping bands in the lower wavenumber with the strongest band positioned at 174 cm-1. Band assignments were made based on band symmetry, experimental band positions from literature and DFT calculated Raman spectrum, and spectral comparison with other ortho arsenite minerals reinerite, cafarsite, and nealite and synthetic lead arsenite compounds Pb2(AsO2)3Cl, Pb2As2O5, and PbAs2O4 . The band at 734 cm-1 was assigned to υ1(AsO3), bands at 726 and 640 cm-1 assigned to υ3, 372 and 357 cm-1 to υ2, and 244, 239 and 207 cm-1 to υ4. The single crystal spectra of finnemanite showed good mode separation, allowing bands to be assigned a symmetry species of Ag, E1g, or E2g.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The single crystal Raman spectra of natural mineral paulmooreite Pb2As2O5 from the Långban locality, Filipstad district, Värmland province, Sweden are presented for the first time. It is a monoclinic mineral containing an isolated [As2O5]4-. Depolarised and single crystal spectra of the natural and synthetic sample compare favorably and are characterized by strong bands around 186 and 140 cm-1 and three medium bands at 800 – 700 cm-1. Band assignments were made based on band symmetry and spectral comparison between experimental band positions and those resulting from Hartree-Fock calculation of an isolated [As2O5]4- ion. Spectral comparison was also made with lead arsenites such as synthetic PbAs2O4 and Pb2(AsO2)3Cl and natural finnemanite in order to determine the contribution of the terminal and bridging O in paulmooreite. Bands at 760 – 733 cm-1 were assigned to terminal As-O vibrations, whereas stretches of the bridging O occur at 562 and 503 cm-1. The single crystal spectra showed good mode separation, allowing bands to be assigned a symmetry species of Ag or Bg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Raman spectra of NaLa(MoO4)2 single crystal have been recorded and interpreted on the basis of C4h symmetry. The observed fundamentals (internal and external) have been assigned unambiguously with the help of polarization data. All the group theoretically predicted Raman active fundamentals have been observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report inelastic light scattering experiments on superconductor Ce0.6Y0.4FeAsO0.8F0.2 from 4K to 300K covering the superconducting transition temperature T-c similar to 48.6K. A strong evidence of the superconductivity induced phonon renormalization for the A(1g) phonon mode near 150cm(-1) associated with the Ce/Y vibrations is observed as reflected in the anomalous red-shift and decrease in the linewidth below T-c. Invoking the coupling of this mode with the superconducting gap, the superconducting gap (2 Delta) at zero temperature is estimated to be similar to 20meV i.e the ratio 2 Delta(0)/k(B)T(c) is similar to 5, suggesting Ce0.6Y0.4FeAsO0.8F0.2 to belong to the class of strong coupling superconductors. In addition, the mode near 430cm(-1) associated with Ce3+ crystal field excitation also shows anomalous increase in its linewidth below T-c suggesting strong coupling between crystal field excitation and the superconducting quasi-particles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solid-solid phase transition of [n-C11H23NH3]2ZnCl4 Complex have been studied by Raman spectroscopy. The results show that the occurence of the structural phase transitions mainly related to the change of packing structure and molecular conformation o

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This PhD thesis investigates the application of hollow core photonic crystal fibre for use as an optical fibre nano litre liquid sensor. The use of hollow core photonic crystal fibre for optical fibre sensing is influenced by the vast wealth of knowledge, and years of research that has been conducted for optical waveguides. Hollow core photonic crystal fibres have the potential for use as a simple, rapid and continuous sensor for a wide range of applications. In this thesis, the velocity of a liquid flowing through the core of the fibre (driven by capillary forces) is used for the determination of the viscosity of a liquid. The structure of the hollow core photonic crystal fibre is harnessed to collect Raman scatter from the sample liquid. These two methods are integrated to investigate the range of applications the hollow core photonic crystal fibre can be utilised for as an optical liquid sensor. Understanding the guidance properties of hollow core photonic crystal fibre is forefront in dynamically monitoring the liquid filling. When liquid is inserted fully or selectively to the capillaries, the propagation properties change from photonic bandgap guidance when empty, to index guidance when the core only is filled and finally to a shifted photonic bandgap effect, when the capillaries are fully filled. The alterations to the guidance are exploited for all viscosity and Raman scattering measurements. The concept of the optical fibre viscosity sensor was tested for a wide range of samples, from aqueous solutions of propan-1-ol to solutions of mono-saccharides in phosphate buffer saline. The samples chosen to test the concept were selected after careful consideration of the importance of the liquid in medical and industrial applications. The Raman scattering of a wide range of biological important fluids, such as creatinine, glucose and lactate were investigated, some for the first time with hollow core photonic crystal fibre.