992 resultados para Rain-water
Resumo:
The aim of this study was to identify the relation between the evapotranspirometer demand and the supply of water from local rainfall, evaluating the possibility of using water excess for irrigation of Green Roofs in the State of Mato Grosso, in Brazil. The study was done using a series of historical data provided by the National Institute of Meteorology (INMET - Instituto Nacional de Meteorologia) which has official climatological stations in 12 cities and regions of the State. The evapotranspiration values were obtained by the Penman-Monteith method and by the Climatic Water Balance (CWB) by the Thornthwaite and Mather method using Available Water Capacity (AWC) of 12mm. With the CWB the excess and deficit were calculated, which were used for the estimative of the volume and area of a reservoir as a function of a collector area of a roof of 100m² and the volume of supplementary water for irrigation. With the obtained results, it was found that in most investigated regions of the State the use of green roofs is not compromised by the water deficiency. On the other hand, the use of a reservoir to accumulate the rain water excess may be impractical, because it requires a considerable area for installation and also because of the high cost of the land.
Resumo:
Concentratios of Cl-, Mg2+, Ca2+, and HCO3- ions were studied in rain waters and condensed atmospheric moisture above the Atlantic Ocean. Maximal number of samples was collected in the eastern tropical North Atlantic. Concentration of chloride ions ranged from 1 to 28 mg/l in rain waters (average 4.3 mg/l) and ranged from 0.3 to 2 mg/l in condensed atmospheric moisture with the average about one order of magnitude less than that for rain waters. Chloride normalized concentrations of magnesium and calcium are greater in rain waters and condensed atmospheric moisture than in ocean water due to more intensive subtraction of these ions as compared to chloride ions. Chloride normalized HCO3- concentration is one order of magnitude greater in atmospheric moisture than in seawater, possibly because of volatile component CO2 taking part in exchange between the ocean and the atmosphere.
Resumo:
In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Piñonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies.
Resumo:
Boron and chlorine were determined in rain water and in atmospheric moisture condensed in a "Saratov" refrigerator. Ocean is the main source of boron on the earth surface. Boron evaporates from the ocean and enriches atmospheric precipitation: B/Cl ratio of ocean water (0.00024) increases by factor of 10-15. Assuming that the average Cl content in global river runoff is 7.8 mg/l and boron content 0.013 mgl, B/Cl ratio in this runoff is 0.0017. The average B/Cl ratio in rain water of the Golubaya (Blue) Bay (Gelendzhik, Black Sea region) is 0.0026 and in condensates of atmospheric moisture during onshore and offshore winds in the same region it averages from 0.0029 to 0.0033. The maximum boron content in the condensates of this region during onshore winds was 0.032 mg/l and the minimum during offshore winds, 0.004 mg/l. /Cl ratio in sea water over the Atlantic Ocean and in the Gelendzhik area of the Black Sea varied within narrow range, mostly from 0.0025 to 0.0035. Similar B/Cl ratio (0.0024) was found for atmospheric precipitation on the slope of the Terskei Ala-Tau near the Issyk-Kul Lake in 1969. Thus, although chemistries of boron and chlorine (in chlorides) are very different, the B/Cl ratio in the atmosphere is fairly constant. This can be taken as a confirmation of an assumption that salt composition of sea water passes into the atmosphere in molecularly dispersed state. Supposing that the ocean-atmosphere system is in equilibrium as regards to the boron budget, it can be assumed that the same amount of boron passes from the ocean into bottom sediments and from lithosphere rocks and soils into the hydrosphere.
Resumo:
Analytical data on the basic salt composition in evaporation products of sea (ocean) water and of rain water falling on the central area of the Indian Ocean are examined. Both hot and low-temperature (vacuum) distillation were used. When ocean water evaporates under calm conditions, sea salts in molecular-dispersed state, metamorphosed in the upper boundary layer, enter the atmosphere in addition to water vapor ("salt respiration of the ocean"). Concentration of these salts is about 0.5 mg per liter of water evaporated. Salts also enter the atmosphere from a foam-covered ocean surface as aerosols.
Resumo:
Water and food are fundamental human rights. However, a number of communities in the world suffer due to a lack of these most basic needs. With few alternative economic opportunities, communities in rural and mountainous Kyrgyzstan have to rely mainly on agriculture for their livelihoods.
Resumo:
Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes of NO3 −–N, NH4 +–N and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.15–0.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 − during the passage of rain water through the ecosystem and bulk δ15N values in soil to detect N transformations. Depletion of 15N in NO3 − and increased NO3 −–N fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3 − concentrations progressively decreased and were enriched in 15N but did not reach the δ15N values of solid phase organic matter (δ15N = 5.6–6.7‰). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the δ15N value of NO3 − in litter leachate was smaller (δ15N = −1.58‰) than in the other quarters (δ15N = −9.38 ± SE 0.46‰) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 − between litter leachate and stream water was smaller in the wettest period than in the other periods probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3 −–N from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3 − gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.
Resumo:
OBJECTIVE: To assess the impact of town planning, infrastructure, sanitation and rainfall on the bacteriological quality of domestic water supplies. METHODS: Water samples obtained from deep and shallow wells, boreholes and public taps were cultured to determine the most probable number of Escherichia coli and total coliform using the multiple tube technique. Presence of enteric pathogens was detected using selective and differential media. Samples were collected during both periods of heavy and low rainfall and from municipalities that are unique with respect to infrastructure planning, town planning and sanitation. RESULTS: Contamination of treated and pipe distributed water was related with distance of the collection point from a utility station. Faults in pipelines increased the rate of contamination (p<0.5) and this occurred mostly in densely populated areas with dilapidated infrastructure. Wastewater from drains was the main source of contamination of pipe-borne water. Shallow wells were more contaminated than deep wells and boreholes and contamination was higher during period of heavy rainfall (p<0.05). E. coli and enteric pathogens were isolated from contaminated supplies. CONCLUSIONS: Poor town planning, dilapidated infrastructure and indiscriminate siting of wells and boreholes contributed to the low bacteriological quality of domestic water supplies. Rainfall accentuated the impact.
Resumo:
A review of the literature on measurements of rain water interception processes by forests is made. Information on Africa, Central and South America, and Asia is given. A general analysis is made and the need to further the measurements under field conditions is stressed.
Resumo:
Crop species with the C4 photosynthetic pathway are more efficient in assimilating N than C3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C4 photosynthetic pathway, and black oat (Avena Strigosa) and triticale (X Triticosecale), with the C3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha-1 of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.
Resumo:
Crop species with the C-4 photosynthetic pathway are more efficient in assimilating N than C-3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C-4 photosynthetic pathway, and black oat (Arena Strigosa) and triticale (X Triticosecale), with the C-3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha(-1) of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C-4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C-4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.
Resumo:
In an attempt to estimate the soil-water transit time using the variation in 18O values, a statistical model was used. This model is based on linear regression analysis applied to the values observed for soil water and rain water. The time obtained from these correlations represents the mean time necessary for the water to run from one collecting point to the next.-from Authors
Resumo:
The best description of water resources for Grand Turk was offered by Pérez Monteagudo (2000) who suggested that rain water was insufficient to ensure a regular water supply although water catchment was being practised and water catchment possibilities had been analysed. Limestone islands, mostly flat and low lying, have few possibilities for large scale surface storage, and groundwater lenses exist in very delicate equilibrium with saline seawater, and are highly likely to collapse due to sea level rise, improper extraction, drought, tidal waves or other extreme event. A study on the impact of climate change on water resources in the Turks and Caicos Islands is a challenging task, due to the fact that the territory of the Islands covers different environmental resources and conditions, and accurate data are lacking. The present report is based on collected data wherever possible, including grey data from several sources such as the Intergovernmental Panel on Climate Change (IPCC) and Cuban meteorological service data sets. Other data were also used, including the author’s own estimates and modelling results. Although challenging, this was perhaps the best approach towards analysing the situation. Furthermore, IPCC A2 and B2 scenarios were used in the present study in an effort to reduce uncertainty. The main conclusion from the scenario approach is that the trend observed in precipitation during the period 1961 - 1990 is decreasing. Similar behaviour was observed in the Caribbean region. This trend is associated with meteorological causes, particularly with the influence of the North Atlantic Anticyclone. The annual decrease in precipitation is estimated to be between 30-40% with uncertain impacts on marine resources. After an assessment of fresh water resources in Turks and Caicos Islands, the next step was to estimate residential water demand based on a high fertility rate scenario for the Islands (one selected from four scenarios and compared to countries having similar characteristics). The selected scenario presents higher projections on consumption growth, enabling better preparation for growing water demand. Water demand by tourists (stopover and excursionists, mainly cruise passengers) was also obtained, based on international daily consumption estimates. Tourism demand forecasts for Turks and Caicos Islands encompass the forty years between 2011 and 2050 and were obtained by means of an Artificial Neural Networks approach. for the A2 and B2 scenarios, resulting in the relation BAU>B2>A2 in terms of tourist arrivals and water demand levels from tourism. Adaptation options and policies were analysed. Resolving the issue of the best technology to be used for Turks and Caicos Islands is not directly related to climate change. Total estimated water storage capacity is about 1, 270, 800 m3/ year with 80% capacity load for three plants. However, almost 11 desalination plants have been detected on Turks and Caicos Islands. Without more data, it is not possible to estimate long term investment to match possible water demand and more complex adaptation options. One climate change adaptation option would be the construction of elevated (30 metres or higher) storm resistant water reservoirs. The unit cost of the storage capacity is the sum of capital costs and operational and maintenance costs. Electricity costs to pump water are optional as water should, and could, be stored for several months. The costs arising for water storage are in the range of US$ 0.22 cents/m3 without electricity costs. Pérez Monteagudo (2000) estimated water prices at around US$ 2.64/m3 in stand points, US$ 7.92 /m3 for government offices, and US$ 13.2 /m3for cistern truck vehicles. These data need to be updated. As Turks and Caicos Islands continues to depend on tourism and Reverse Osmosis (RO) for obtaining fresh water, an unavoidable condition to maintaining and increasing gross domestic product(GDP) and population welfare, dependence on fossil fuels and vulnerability to increasingly volatile prices will constitute an important restriction. In this sense, mitigation supposes a synergy with adaptation. Energy demand and emissions of carbon dioxide (CO2) were also estimated using an emissions factor of 2. 6 tCO2/ tonne of oil equivalent (toe). Assuming a population of 33,000 inhabitants, primary energy demand was estimated for Turks and Caicos Islands at 110,000 toe with electricity demand of around 110 GWh. The business as usual (BAU), as well as the mitigation scenarios were estimated. The BAU scenario suggests that energy use should be supported by imported fossil fuels with important improvements in energy efficiency. The mitigation scenario explores the use of photovoltaic and concentrating solar power, and wind energy. As this is a preliminary study, the local potential and locations need to be identified to provide more relevant estimates. Macroeconomic assumptions are the same for both scenarios. By 2050, Turks and Caicos Islands could demand 60 m toe less than for the BAU scenario.