941 resultados para Rain and rainfall cycles
Resumo:
O presente estudo descreve a associação de nematódeos da Baía de Tamandaré (Brasil), praia arenosa tropical típica, durante as marés (baixa, enchente, alta e vazante) de dois ciclos de maré consecutivos, em quatro meses diferentes do ano (Maio, Julho, Setembro e Novembro). A associação de nematódeos foi dominada por Metachromadora e Perepsilonema e variou significativamente entre meses e marés. Densidades foram mais baixas em julho e as mudanças na associação ocorreram durante meses de transição entre chuvoso e seco mostrando a influência do ciclo de chuvas. No ciclo de maré a enchente e vazante pareceram exercer a maior influência, embora os padrões não fossem muito claros. Recomenda-se que os estudos devam ser feitos ao nível de gêneros/espécies para melhor compreensão dos padrões das associações de nematódeos durante ciclos de marés.
Resumo:
A estrutura populacional (machos, fêmeas e juvenis) e densidade de Mesacanthion hirsutum Gerlach foram estudadas durante as marés (baixa, enchente, alta e vazante) de dois ciclos de maré consecutivos, em quatro meses diferentes do ano (Maio, Julho, Setembro e Novembro). As variações de densidade de Mesacanthion hirsutum mostraram associação com o ciclo de chuvas, com densidades mais baixas durante Julho e Setembro e significativamente maiores em Maio e Novembro. A estrutura populacional constituiu-se em sua maior parte por juvenis indicando uma reprodução continua durante todo o período de estudo. Não foram encontradas diferenças significativas entre os períodos claros e escuros do dia, contudo maiores densidades foram detectadas durante as marés altas e vazantes demonstrando que a espécie pode estar se dispersando através da coluna d'água e/ou migrando dentro do sedimento.
Resumo:
At head of title: Solar Physics Committee.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Piñonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies.
Resumo:
We describe the development and parameterization of a grid-based model of African savanna vegetation processes. The model was developed with the objective of exploring elephant effects on the diversity of savanna species and structure, and in this formulation concentrates on the relative cover of grass and woody plants, the vertical structure of the woody plant community, and the distribution of these over space. Grid cells are linked by seed dispersal and fire, and environmental variability is included in the form of stochastic rainfall and fire events. The model was parameterized from an extensive review of the African savanna literature; when available, parameter values varied widely. The most plausible set of parameters produced long-term coexistence between woody plants and grass, with the tree-grass balance being more sensitive to changes in parameters influencing demographic processes and drought incidence and response, while less sensitive to fire regime. There was considerable diversity in the woody structure of savanna systems within the range of uncertainty in tree growth rate parameters. Thus, given the paucity of height growth data regarding woody plant species in southern African savannas, managers of natural areas should be cognizant of different tree species growth and damage response attributes when considering whether to act on perceived elephant threats to vegetation. © 2007 Springer Science+Business Media B.V.
Resumo:
In this study, the fine-scale structure of the diurnal variability of ground-based lightning is systematically compared with satellite-based rain. At the outset, it is shown that tropical variability of lightning exhibits a prominent diurnal mode, much like rain. A comparison of the geographical distribution of the timing of the diurnal maximum shows that there is very good agreement between the two observables over continental and coastal regions throughout the tropics. Following this global tropical comparison, we focus on two regions, Borneo and equatorial South America, both of which show the interplay between oceanward and landward propagations of the phase of the diurnal maximum. Over Borneo, both rain and lightning clearly show a climatological cycle of ``breathing in'' (afternoon to early morning) and ``breathing out'' (morning to early afternoon). Over the equatorial east coast of South America, landward propagation is noticed in rain and lightning from early afternoon to early morning. Along the Pacific coast of South America, both rain and lightning show oceanward propagation. Though qualitatively consistent, over both regions the propagation is seen to extend further in rainfall. Additionally, given that lightning highlights vigorous convection, the timing of its diurnal maximum often precedes that of rainfall in the convective life cycle. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High aerosol loads are discharged into the atmosphere by biomass burning in Amazon and Central Brazil during the dry season. These particles can interact with clouds as cloud condensation nuclei (CCN) changing cloud microphysics and radiative properties and, thereby, affecting the radiative budget of the region. Furthermore, the biomass burning aerosols can be transported by the low level jet (LLJ) to La Plata Basin where many mesoscale convective systems (MCS) are observed during spring and summer. This work proposes to investigate whether the aerosols from biomass burning may affect the MCS in terms of rainfall over La Plata Basin during spring. Since the aerosol effect is very difficult to isolate because convective clouds are very sensitive to small environment disturbances, detailed analyses using different techniques are used. The binplot, 2D histograms and combined empirical orthogonal function (EOF) methods are used to separate certain environment conditions with the possible effects of aerosol loading. Reanalysis 2, TRMM-3B42 and AERONET data are used from 1999 up to 2012 during September-December. The results show that there are two patterns associated to rainfall-aerosol interaction in La Plata Basin: one in which the dynamic conditions are more important than aerosols to generate rain; and a second one where the aerosol particles have a role in rain formation, acting mainly to suppress rainfall over La Plata Basin.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: Meteorology of Australia. Commonwealth Bureau of Meteorology.
Resumo:
Title varies slightly.
Basin rainfall and snowmelt computation : Hydrologic Engineering Center computer program 23-J2-L226.
Resumo:
At head of cover title: Generalized computer program.
Resumo:
1886 includes observations in part of Queensland