992 resultados para Radon toxicology


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The transfer coefficient of radon from water to air was investigated in schools. Kitchens, bathrooms and locker rooms were studied for seven schools in Maine. Simulations were done in water-use rooms where radon in air detectors were in place. Quantities measured were radon in water (270-24500 F) and air (0-80 q), volume of water used, emissivities (0.01-0.99) and ventilation rates (0.012-0.066A). Variation throughout the room of the radon concentration was found. Values calculated for the transfer coefficient for kitchens and baths were ranged from 9.6 x to 2.0 x The transfer coefficient was calculated using these parameters and was also measured using concentrations of radon in water and air. This provides a means by which radon in air can be estimated using the transfer coefficient and the concentration in the water in other schools and it can be used to estimate the dose caused by radon released from water use. This project was partially funded by the United States Environmental Protection Agency (grant #X828l2 101-0) and by the State of Maine (grant #10A500178). These are the first measurements of this type to be done in schools in the United States.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maternal ingestion of high concentrations of radon-222 (Rn-222) in drinking during pregnancy may pose a significant radiation hazard to the developing embryo. The effects of ionizing radiation to the embryo and fetus have been the subject of research, analyses, and the development of a number of radiation dosimetric models for a variety of radionuclides. Currently, essentially all of the biokinetic and dosimetric models that have been developed by national and international radiation protection agencies and organizations recommend calculating the dose to the mother's uterus as a surrogate for estimating the dose to the embryo. Heretofore, the traditional radiation dosimetry models have neither considered the embryo a distinct and rapidly developing entity, the fact that it is implanted in the endometrial layer of the uterus, nor the physiological interchanges that take place between maternal and embryonic cells following the implantation of the blastocyst in the endometrium. The purpose of this research was to propose a new approach and mathematical model for calculating the absorbed radiation dose to the embryo by utilizing a semiclassical treatment of alpha particle decay and subsequent scattering of energy deposition in uterine and embryonic tissue. The new approach and model were compared and contrasted with the currently recommended biokinetic and dosimetric models for estimating the radiation dose to the embryo. The results obtained in this research demonstrate that the estimated absorbed dose for an embryo implanted in the endometrial layer of the uterus during the fifth week of embryonic development is greater than the estimated absorbed dose for an embryo implanted in the uterine muscle on the last day of the eighth week of gestation. This research provides compelling evidence that the recommended methodologies and dosimetric models of the Nuclear Regulatory Commission and International Commission on Radiological Protection employed for calculating the radiation dose to the embryo from maternal intakes of radionuclides, including maternal ingestion of Rn-222 in drinking water would result in an underestimation of dose. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reuse of industrial by-products is important for members of numerous industrial sectors. However, though the benefits of reuse are evident from an economical point of view, some compounds in these materials can have a negative effect on users' health.In this study, the radon emanation and exhalation features of red mud were surveyed using heat-treatment (100-1200 °C). As a result of the 1200°C-treated samples, massic radon exhalation capacity reduced from 75 ± 10 mBq kg-1 h-1 to 7 ± 4 mBq kg-1 h-1, approximately 10% of the initial exhalation rate.To find an explanation for internal structural changes, the porosity features of the heat-treated samples were also investigated. It was found that the cumulative pore volume reduced significantly in less than 100 nm, which can explain the reduced massic exhalation capacity in the high temperature treated range mentioned above.SEM snapshots were taken of the surfaces of the samples as visual evidence for superficial morphological changes. It was found that the surface of the high temperature treated samples had changed, proving the decrement of open pores on the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of ions in the production of atmospheric particles has gained wide interest due to their profound impact on climate. Away from anthropogenic sources, molecules are ionized by alpha radiation from radon exhaled from the ground and cosmic gamma radiation from space. These molecular ions quickly form into ‘cluster ions’, typically smaller than about 1.5 nm. Using our measurements and the published literature, we present evidence to show that cluster ion concentrations in forest areas are consistently higher than outside. Since alpha radiation cannot penetrate more than a few centimetres of soil, radon present deep in the ground cannot directly contribute to the measured cluster ion concentrations. We propose an additional mechanism whereby radon, which is water soluble, is brought up by trees and plants through the uptake of groundwater and released into the atmosphere by transpiration. We estimate that, in a forest comprising eucalyptus trees spaced 4m apart, approximately 28% of the radon in the air may be released by transpiration. Considering that 24% of the earth’s land area is still covered in forests; these findings have potentially important implications for atmospheric aerosol formation and climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue-specific extracellular matrix (ECM) is known to be an ideal bioscaffold to inspire the future of regenerative medicine. It holds the secret of how nature has developed such an organization of molecules into a unique functional complexity. This work exploited an innovative image processing algorithm and high resolution microscopy associated with mechanical analysis to establish a correlation between the gradient organization of cartiligous ECM and its anisotropic biomechanical response. This was hypothesized to be a reliable determinant that can elucidate how microarchitecture interrelates with biomechanical properties. Hough-Radon transform of the ECM cross-section images revealed its conformational variation from tangential interface down to subchondral region. As the orientation varied layer by layer, the anisotropic mechanical response deviated relatively. Although, results were in good agreement (Kendall's tau-b > 90%), there were evidences proposing that alignment of the fibrous network, specifically in middle zone, is not as random as it was previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern toxicology investigates a wide array of both old and new health hazards. Priority setting is needed to select agents for research from the plethora of exposure circumstances. The changing societies and a growing fraction of the aged have to be taken into consideration. A precise exposure assessment is of importance for risk estimation and regulation. Toxicology contributes to the exploration of pathomechanisms to specify the exposure metrics for risk estimation. Combined effects of co-existing agents are not yet sufficiently understood. Animal experiments allow a separate administration of agents which can not be disentangled by epidemiological means, but their value is limited for low exposure levels in many of today’s settings. As an experimental science, toxicology has to keep pace with the rapidly growing knowledge about the language of the genome and the changing paradigms in cancer development. During the pioneer era of assembling a working draft of the human genome, toxicogenomics has been developed. Gene and pathway complexity have to be considered when investigating gene–environment interactions. For a best conduct of studies, modern toxicology needs a close liaison with many other disciplines like epidemiology and bioinformatics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of radon ((222)Rn) activity flux using activated charcoal canisters was examined to investigate the distribution of the adsorbed (222)Rn in the charcoal bed and the relationship between (222)Rn activity flux and exposure time. The activity flux of (222)Rn from five sources of varying strengths was measured for exposure times of one, two, three, five, seven, 10, and 14 days. The distribution of the adsorbed (222)Rn in the charcoal bed was obtained by dividing the bed into six layers and counting each layer separately after the exposure. (222)Rn activity decreased in the layers that were away from the exposed surface. Nevertheless, the results demonstrated that only a small correction might be required in the actual application of charcoal canisters for activity flux measurement, where calibration standards were often prepared by the uniform mixing of radium ((226)Ra) in the matrix. This was because the diffusion of (222)Rn in the charcoal bed and the detection efficiency as a function of the charcoal depth tended to counterbalance each other. The influence of exposure time on the measured (222)Rn activity flux was observed in two situations of the canister exposure layout: (a) canister sealed to an open bed of the material and (b) canister sealed over a jar containing the material. The measured (222)Rn activity flux decreased as the exposure time increased. The change in the former situation was significant with an exponential decrease as the exposure time increased. In the latter case, lesser reduction was noticed in the observed activity flux with respect to exposure time. This reduction might have been related to certain factors, such as absorption site saturation or the back diffusion of (222)Rn gas occurring at the canister-soil interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During their entire lives, people are exposed to the pollutants present in indoor air. Recently, Electronic Nicotine Delivery Systems, mainly known as electronic cigarettes, have been widely commercialized: they deliver particles into the lungs of the users but a “second-hand smoke” has yet to be associated to this indoor source. On the other hand, the naturally-occurring radioactive gas, i.e. radon, represents a significant risk for lung cancer, and the cumulative action of these two agents could be worse than the agents separately would. In order to deepen the interaction between radon progeny and second-hand aerosol from different types of cigarettes, a designed experimental study was carried out by generating aerosol from e-cigarette vaping as well as from second-hand traditional smoke inside a walk-in radon chamber at the National Institute of Ionizing Radiation Metrology (INMRI) of Italy. In this chamber, the radon present in air comes naturally from the floor and ambient conditions are controlled. To characterize the sidestream smoke emitted by cigarettes, condensation particle counters and scanning mobility particle sizer were used. Radon concentration in the air was measured through an Alphaguard ionization chamber, whereas the measurement of radon decay product in the air was performed with the Tracelab BWLM Plus-2S Radon daughter Monitor. It was found an increase of the Potential Alpha-Energy Concentration (PAEC) due to the radon decay products attached to aerosol for higher particle number concentrations. This varied from 7.47 ± 0.34 MeV L−1 to 12.6 ± 0.26 MeV L−1 (69%) for the e-cigarette. In the case of traditional cigarette and at the same radon concentration, the increase was from 14.1 ± 0.43 MeV L−1 to 18.6 ± 0.19 MeV L−1 (31%). The equilibrium factor increases, varying from 23.4% ± 1.11% to 29.5% ± 0.26% and from 30.9% ± 1.0% to 38.1 ± 0.88 for the e-cigarette and traditional cigarette, respectively. These growths still continue for long time after the combustion, by increasing the exposure risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we show a method of obtaining general and orthogonal moments, specifically Legendre and Zernicke moments, from the Radon Transform data of a two-dimensional function. The regular or geometric moments are first evaluated directly from the projection data and the orthogonal moments are derived from these regular moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove end point estimate for Radon transform of radial functions on affine Grasamannian and real hyperbolic space. We also discuss analogs of these results on the sphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, silver nanoparticles (AgNPs) have attracted considerable interest in the field of food, agriculture and pharmaceuticals mainly due to its antibacterial activity. AgNPs have also been reported to possess toxic behavior. The toxicological behavior of nanomaterials largely depends on its size and shape which ultimately depend on synthetic protocol. A systematic and detailed analysis for size variation of AgNP by thermal co-reduction approach and its efficacy toward microbial and cellular toxicological behavior is presented here. With the focus to explore the size-dependent toxicological variation, two different-sized NPs have been synthesized, i.e., 60 nm (Ag60) and 85 nm (Ag85). A detailed microbial toxicological evaluation has been performed by analyzing minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), diameter of inhibition zone (DIZ), growth kinetics (GrK), and death kinetics (DeK). Comparative cytotoxicological behavior was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It has been concluded by this study that the size of AgNPs can be varied, by varying the concentration of reactants and temperature called as ``thermal co-reduction'' approach, which is one of the suitable approaches to meet the same. Also, the smaller AgNP has shown more microbial and cellular toxicity.