978 resultados para Radiotherapy, Image-Guided
Resumo:
PURPOSE: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques.
METHODS AND MATERIALS: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions.
RESULTS: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose ± standard deviation to the planning target volume was 67 ± 1 Gy. The contralateral vocal cord dose was reduced from 66 ± 1 Gy in the conventional plans to 39 ± 8 Gy and 36 ± 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk.
CONCLUSIONS: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.
Resumo:
A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific sub-regions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.
Resumo:
Radiation biology is being transformed by the implementation of small animal image-guided precision radiotherapy into pre-clinical research programmes worldwide. We report on the current status and developments of the small animal radiotherapy field, suggest criteria for the design and execution of effective studies and contend that this powerful emerging technology, used in combination with relevant small animal models, holds much promise for translational impact in radiation oncology.
Resumo:
The standard of care for locally advanced anal cancer has been concurrent chemoradiation. However, conventional treatment with 3-dimensional radiotherapy is associated with significant toxicity. The feasibility of new radiotherapy techniques such as image-guided radiotherapy (IGRT) in combination with chemotherapy for the treatment of this malignancy was assessed.
Resumo:
BACKGROUND: Tumor bed stereotactic radiosurgery (SRS) after resection of brain metastases is a new strategy to delay or avoid whole-brain irradiation (WBRT) and its associated toxicities. This retrospective study analyzes results of frameless image-guided linear accelerator (LINAC)-based SRS and stereotactic hypofractionated radiotherapy (SHRT) as adjuvant treatment without WBRT. MATERIALS AND METHODS: Between March 2009 and February 2012, 44 resection cavities in 42 patients were treated with SRS (23 cavities) or SHRT (21 cavities). All treatments were delivered using a stereotactic LINAC. All cavities were expanded by ≥ 2 mm in all directions to create the clinical target volume (CTV). RESULTS: The median planning target volume (PTV) for SRS was 11.1 cm(3). The median dose prescribed to the PTV margin for SRS was 17 Gy. Median PTV for SHRT was 22.3 cm(3). The fractionation schemes applied were: 4 fractions of 6 Gy (5 patients), 6 fractions of 4 Gy (6 patients) and 10 fractions of 4 Gy (10 patients). Median follow-up was 9.6 months. Local control (LC) rates after 6 and 12 months were 91 and 77 %, respectively. No statistically significant differences in LC rates between SRS and SHRT treatments were observed. Distant brain control (DBC) rates at 6 and 12 months were 61 and 33 %, respectively. Overall survival (OS) at 6 and 12 months was 87 and 63.5 %, respectively, with a median OS of 15.9 months. One patient treated by SRS showed symptoms of radionecrosis, which was confirmed histologically. CONCLUSION: Frameless image-guided LINAC-based adjuvant SRS and SHRT are effective and well tolerated local treatment strategies after resection of brain metastases in patients with oligometastatic disease.
Resumo:
Recent treatment planning studies have demonstrated the use of physiologic images in radiation therapy treatment planning to identify regions for functional avoidance. This image-guided radiotherapy (IGRT) strategy may reduce the injury and/or functional loss following thoracic radiotherapy. 4D computed tomography (CT), developed for radiotherapy treatment planning, is a relatively new imaging technique that allows the acquisition of a time-varying sequence of 3D CT images of the patient's lungs through the respiratory cycle. Guerrero et al. developed a method to calculate ventilation imaging from 4D CT, which is potentially better suited and more broadly available for IGRT than the current standard imaging methods. The key to extracting function information from 4D CT is the construction of a volumetric deformation field that accurately tracks the motion of the patient's lungs during the respiratory cycle. The spatial accuracy of the displacement field directly impacts the ventilation images; higher spatial registration accuracy will result in less ventilation image artifacts and physiologic inaccuracies. Presently, a consistent methodology for spatial accuracy evaluation of the DIR transformation is lacking. Evaluation of the 4D CT-derived ventilation images will be performed to assess correlation with global measurements of lung ventilation, as well as regional correlation of the distribution of ventilation with the current clinical standard SPECT. This requires a novel framework for both the detailed assessment of an image registration algorithm's performance characteristics as well as quality assurance for spatial accuracy assessment in routine application. Finally, we hypothesize that hypo-ventilated regions, identified on 4D CT ventilation images, will correlate with hypo-perfused regions in lung cancer patients who have obstructive lesions. A prospective imaging trial of patients with locally advanced non-small-cell lung cancer will allow this hypothesis to be tested. These advances are intended to contribute to the validation and clinical implementation of CT-based ventilation imaging in prospective clinical trials, in which the impact of this imaging method on patient outcomes may be tested.
Resumo:
The combined use of androgen deprivation therapy (ADT) and image-guided radiotherapy (IGRT) can improve overall survival in aggressive, localized prostate cancer. However, owing to the adverse effects of prolonged ADT, it is imperative to identify the patients who would benefit from this combined-modality therapy relative to the use of IGRT alone. Opportunities exist for more personalized approaches in treating aggressive, locally advanced prostate cancer. Biomarkers--such as disseminated tumour cells, circulating tumour cells, genomic signatures and molecular imaging techniques--could identify the patients who are at greatest risk for systemic metastases and who would benefit from the addition of systemic ADT. By contrast, when biomarkers of systemic disease are not present, treatment could proceed using local IGRT alone. The choice of drug, treatment duration and timing of ADT relative to IGRT could be predicated on these personalized approaches to prostate cancer medicine. These novel treatment intensification and reduction strategies could result in improved prostate-cancer-specific survival and overall survival, without incurring the added expense of metabolic syndrome and other adverse effects of ADT in all patients.
Resumo:
OBJECTIVES: Radiotherapy is planned to achieve the optimal physical dose distribution to the target tumour volume whilst minimising dose to the surrounding normal tissue. Recent in vitro experimental evidence has demonstrated an important role for intercellular communication in radiobiological responses following non-uniform exposures. This study aimed to model the impact of these effects in the context of techniques involving highly modulated radiation fields or spatially fractionated treatments such as GRID therapy.
METHODS: Using the small animal radiotherapy research platform (SARRP) as a key enabling technology to deliver precision imaged-guided radiotherapy, it is possible to achieve spatially modulated dose distributions that model typical clinical scenarios. In this work, we planned uniform and spatially fractionated dose distributions using multiple isocentres with beam sizes of 0.5 - 5 mm to obtain 50% volume coverage in a subcutaneous murine tumour model, and applied a model of cellular response that incorporates intercellular communication to assess the potential impact of signalling effects with different ranges.
RESULTS: Models of GRID treatment plans which incorporate intercellular signalling showed increased cell killing within the low dose region. This results in an increase in the Equivalent Uniform Dose (EUD) for GRID exposures compared to standard models, with some GRID exposures being predicted to be more effective than uniform delivery of the same physical dose.
CONCLUSIONS: This study demonstrates the potential impact of radiation induced signalling on tumour cell response for spatially fractionated therapies and identifies key experiments to validate this model and quantify these effects in vivo.
ADVANCES IN KNOWLEDGE: This study highlights the unique opportunities now possible using advanced preclinical techniques to develop a foundation for biophysical optimisation in radiotherapy treatment planning.
Resumo:
PURPOSE: To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes.
MATERIALS AND METHODS: For 13 patients, four treatment combinations were compared; 3D-conformal RT (i.e., forward IMRT) in free-breathing 3D-CRT(FB), 3D-CRT(vmDIBH), 2 partial arcs VMAT(FB), and VMAT(vmDIBH). Prescribed dose was 42.56 Gy in 16 fractions. For 10 additional patients, 3D-CRT and VMAT in vmDIBH only were also compared.
RESULTS: Dose conformity, PTV coverage, ipsilateral and total lung doses were significantly better for VMAT plans compared to 3D-CRT. Mean heart dose (D(mean,heart)) reduction in 3D-CRT(vmDIBH) was between 0.9 and 8.6 Gy, depending on initial D(mean,heart) (in 3D-CRT(FB) plans). VMAT(vmDIBH) reduced the D(mean,heart) further when D(mean,heart) was still >3.2 Gy in 3D-CRT(vmDIBH). Mean contralateral breast dose was higher for VMAT plans (2.7 Gy) compared to 3DCRT plans (0.7 Gy).
CONCLUSIONS: VMAT and 3D-CRT(vmDIBH) significantly reduced heart dose for patients treated with locoregional RT of left-sided breast cancer. When Dmean,heart exceeded 3.2 Gy in 3D-CRT(vmDIBH) plans, VMAT(vmDIBH) resulted in a cumulative heart dose reduction. VMAT also provided better target coverage and reduced ipsilateral lung dose, at the expense of a small increase in the dose to the contralateral breast.
Resumo:
PURPOSE: To determine whether a 3-mm isotropic target margin adequately covers the prostate and seminal vesicles (SVs) during administration of an intensity-modulated radiation therapy (IMRT) treatment fraction, assuming that daily image-guided setup is performed just before each fraction. MATERIALS AND METHODS: In-room computed tomographic (CT) scans were acquired immediately before and after a daily treatment fraction in 46 patients with prostate cancer. An eight-field IMRT plan was designed using the pre-fraction CT with a 3-mm margin and subsequently recalculated on the post-fraction CT. For convenience of comparison, dose plans were scaled to full course of treatment (75.6 Gy). Dose coverage was assessed on the post-treatment CT image set. RESULTS: During one treatment fraction (21.4+/-5.5 min), there were reductions in the volumes of the prostate and SVs receiving the prescribed dose (median reduction 0.1% and 1.0%, respectively, p<0.001) and in the minimum dose to 0.1 cm(3) of their volumes (median reduction 0.5 and 1.5 Gy, p<0.001). Of the 46 patients, three patients' prostates and eight patients' SVs did not maintain dose coverage above 70 Gy. Rectal filling correlated with decreased percentage-volume of SV receiving 75.6, 70, and 60 Gy (p<0.02). CONCLUSIONS: The 3-mm intrafractional margin was adequate for prostate dose coverage. However, a significant subset of patients lost SV dose coverage. The rectal volume change significantly affected SV dose coverage. For advanced-stage prostate cancers, we recommend to use larger margins or improve organ immobilization (such as with a rectal balloon) to ensure SV coverage.
Resumo:
Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams' eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric and layered rescanning have been observed as a function of increasing number of re-scans. However, once gating and rescanning is combined, HI to within 2% of the static plan could be achieved in the clinical target volume, with only moderately prolonged treatment times, irrespective of the rescanning strategy used. Moreover, these results are independent of the motion surrogate used. In conclusion, our results suggest image guided beam gating, combined with rescanning, is a feasible, effective and efficient motion mitigation approach for PBS-based liver tumour treatments.
Resumo:
Mammographic density (MD) adjusted for age and body mass index (BMI) is a strong heritable breast cancer risk factor; however, its biological basis remains elusive. Previous studies assessed MD-associated histology using random sampling approaches, despite evidence that high and low MD areas exist within a breast and are negatively correlated with respect to one another. We have used an image-guided approach to sample high and low MD tissues from within individual breasts to examine the relationship between histology and degree of MD. Image-guided sampling was performed using two different methodologies on mastectomy tissues (n = 12): (1) sampling of high and low MD regions within a slice guided by bright (high MD) and dark (low MD) areas in a slice X-ray film; (2) sampling of high and low MD regions within a whole breast using a stereotactically guided vacuum-assisted core biopsy technique. Pairwise analysis accounting for potential confounders (i.e. age, BMI, menopausal status, etc.) provides appropriate power for analysis despite the small sample size. High MD tissues had higher stromal (P = 0.002) and lower fat (P = 0.002) compositions, but no evidence of difference in glandular areas (P = 0.084) compared to low MD tissues from the same breast. High MD regions had higher relative gland counts (P = 0.023), and a preponderance of Type I lobules in high MD compared to low MD regions was observed in 58% of subjects (n = 7), but did not achieve significance. These findings clarify the histologic nature of high MD tissue and support hypotheses regarding the biophysical impact of dense connective tissue on mammary malignancy. They also provide important terms of reference for ongoing analyses of the underlying genetics of MD.
Resumo:
Effective usage of image guidance by incorporating the refractive index (RI) variation in computational modeling of light propagation in tissue is investigated to assess its impact on optical-property estimation. With the aid of realistic patient breast three-dimensional models, the variation in RI for different regions of tissue under investigation is shown to influence the estimation of optical properties in image-guided diffuse optical tomography (IG-DOT) using numerical simulations. It is also shown that by assuming identical RI for all regions of tissue would lead to erroneous estimation of optical properties. The a priori knowledge of the RI for the segmented regions of tissue in IG-DOT, which is difficult to obtain for the in vivo cases, leads to more accurate estimates of optical properties. Even inclusion of approximated RI values, obtained from the literature, for the regions of tissue resulted in better estimates of optical properties, with values comparable to that of having the correct knowledge of RI for different regions of tissue.