803 resultados para Radiography, Bitewing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dental Panoramic Tomography (DPT) is a widely used and valuable examination in dentistry. One area prone to artefacts and therefore misinterpretation is the anterior region of the mandible. This case study discusses a periapical radiolucency related to lower anterior teeth that is discovered to be a radiographic artefact. Possible causes of the artefact include a pronounced depression in the mental region of the mandible or superimposition of intervertebral spaces. Additional limitations of the DPT image include superimposition of radio-opaque structures, reduced image detail compared to intra-oral views and uneven magnification. These problems often make the DPT inappropriate for imaging the anterior mandible.

CLINICAL RELEVANCE: Panoramic radiography is often unsuitable for radiographic examination of the anterior mandible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to assess the performance of International Caries Detection and Assessment System (ICDAS), radiographic examination, and fluorescence-based methods for detecting occlusal caries in primary teeth. One occlusal site on each of 79 primary molars was assessed twice by two examiners using ICDAS, bitewing radiography (BW), DIAGNOdent 2095 (LF), DIAGNOdent 2190 (LFpen), and VistaProof fluorescence camera (FC). The teeth were histologically prepared and assessed for caries extent. Optimal cutoff limits were calculated for LF, LFpen, and FC. At the D 1 threshold (enamel and dentin lesions), ICDAS and FC presented higher sensitivity values (0.75 and 0.73, respectively), while BW showed higher specificity (1.00). At the D 2 threshold (inner enamel and dentin lesions), ICDAS presented higher sensitivity (0.83) and statistically significantly lower specificity (0.70). At the D 3 threshold (dentin lesions), LFpen and FC showed higher sensitivity (1.00 and 0.91, respectively), while higher specificity was presented by FC (0.95), ICDAS (0.94), BW (0.94), and LF (0.92). The area under the receiver operating characteristic (ROC) curve (Az) varied from 0.780 (BW) to 0.941 (LF). Spearman correlation coefficients with histology were 0.72 (ICDAS), 0.64 (BW), 0.71 (LF), 0.65 (LFpen), and 0.74 (FC). Inter- and intraexaminer intraclass correlation values varied from 0.772 to 0.963 and unweighted kappa values ranged from 0.462 to 0.750. In conclusion, ICDAS and FC exhibited better accuracy in detecting enamel and dentin caries lesions, whereas ICDAS, LF, LFpen, and FC were more appropriate for detecting dentin lesions on occlusal surfaces in primary teeth, with no statistically significant difference among them. All methods presented good to excellent reproducibility. © 2012 Springer-Verlag London Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência Odontólogica - FOA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the accuracy of the depth of carious lesions on bitewing radiographs. Methods Recently extracted primary molars had their proximal surfaces evaluated visually (EC) and classified as healthy surface (0), signs that suggest the presence of carious lesions in enamel (1), signs of a superficial lesion in dentin (2) and carious lesions in deep dentin (3). Results The results were obtained by consensus between the investigators. The gold standard was determined by histological analysis. The values of sensitivity, specificity, accuracy and area under the ROC (Receiver Operating Characteristic) curve were evaluated. There was equilibrium between sensitivity (76.92% EC and 88.46% ER) and specificity (95.83% EC and 95.83% ER). Accuracy was 86.01% (EC) and 88.46% (ER). The Spearman correlation test was used to prove the correlation between clinical and radiographic examinations (0.886), for clinical and histological (0.736) and for radiographic and histological analysis (0.843).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the performance of a pen‑type laser fluorescence device (DIAGNOdent 2190; LFpen, KaVo, Germany) and bitewing radiographs (BW) for approximal caries detection in permanent and primary teeth. Materials and Methods: A total of 246 anterior approximal surfaces (102 permanent and 144 primary) were selected. Contact points were simulated using sound teeth. Two examiners assessed all approximal surfaces using LFpen and BW. The teeth were histologically assessed for the reference standard. Optimal cut‑off limits were calculated for LFpen for primary and permanent teeth. Sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (Az) were calculated for D1 (enamel and dentin lesions) and D3 (dentin lesions) thresholds. The reproducibility was assessed by intraclass correlation coefficient (ICC) and Cohen's weighted kappa values. Results: For permanent teeth, the LFpen cut‑off were 0– 27 (sound), 28– 33 (enamel caries) and >33 (dentin caries). For primary teeth, the LFpen cut‑off were 0– 7 (sound), 8– 32 (enamelcaries) and >32 (dentin caries). The LFpen presented higher sensitivity values than BW for primary teeth (0.58 vs. 0.32 at D1 and 0.80 vs. 0.47 at D3) and permanent teeth (0.80 vs. 0.57 at D1 and 0.94 vs. 0.51 at D3). Specificity did not show a significant difference between the methods. Rank correlations with histology were 0.59 and 0.83 (LFpen) and 0.36 and 0.70 (BW) for primary and permanent teeth, respectively, considering all lesions. ICC values for LFpen were 0.71 (inter) and 0.86 (intra) for permanent teeth and 0.94 (inter) and 0.90/0.99 for primary teeth. Kappa values for BW were 0.69 (inter) and 0.68/0.90 (intra) for permanent teeth and 0.64 (inter) and 0.89/0.89 for primary teeth. Conclusion: LFpen presented better reproducibility for primary and permanent teeth and higher accuracy in detecting caries lesions at D1 threshold than BW for permanent teeth. LFpen should be used as an adjunct method for approximal caries detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostic radiology represents the largest man-made contribution to population radiation doses in Europe. To be able to keep the diagnostic benefit versus radiation risk ratio as high as possible, it is important to understand the quantitative relationship between the patient radiation dose and the various factors which affect the dose, such as the scan parameters, scan mode, and patient size. Paediatric patients have a higher probability for late radiation effects, since longer life expectancy is combined with the higher radiation sensitivity of the developing organs. The experience with particular paediatric examinations may be very limited and paediatric acquisition protocols may not be optimised. The purpose of this thesis was to enhance and compare different dosimetric protocols, to promote the establishment of the paediatric diagnostic reference levels (DRLs), and to provide new data on patient doses for optimisation purposes in computed tomography (with new applications for dental imaging) and in paediatric radiography. Large variations in radiation exposure in paediatric skull, sinus, chest, pelvic and abdominal radiography examinations were discovered in patient dose surveys. There were variations between different hospitals and examination rooms, between different sized patients, and between imaging techniques; emphasising the need for harmonisation of the examination protocols. For computed tomography, a correction coefficient, which takes individual patient size into account in patient dosimetry, was created. The presented patient size correction method can be used for both adult and paediatric purposes. Dental cone beam CT scanners provided adequate image quality for dentomaxillofacial examinations while delivering considerably smaller effective doses to patient compared to the multi slice CT. However, large dose differences between cone beam CT scanners were not explained by differences in image quality, which indicated the lack of optimisation. For paediatric radiography, a graphical method was created for setting the diagnostic reference levels in chest examinations, and the DRLs were given as a function of patient projection thickness. Paediatric DRLs were also given for sinus radiography. The detailed information about the patient data, exposure parameters and procedures provided tools for reducing the patient doses in paediatric radiography. The mean tissue doses presented for paediatric radiography enabled future risk assessments to be done. The calculated effective doses can be used for comparing different diagnostic procedures, as well as for comparing the use of similar technologies and procedures in different hospitals and countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The purpose of this work is to improve the noise power spectrum (NPS), and thus the detective quantum efficiency (DQE), of computed radiography (CR) images by correcting for spatial gain variations specific to individual imaging plates. CR devices have not traditionally employed gain-map corrections, unlike the case with flat-panel detectors, because of the multiplicity of plates used with each reader. The lack of gain-map correction has limited the DQE(f) at higher exposures with CR. This current work describes a feasible solution to generating plate-specific gain maps. METHODS: Ten high-exposure open field images were taken with an RQA5 spectrum, using a sixth generation CR plate suspended in air without a cassette. Image values were converted to exposure, the plates registered using fiducial dots on the plate, the ten images averaged, and then high-pass filtered to remove low frequency contributions from field inhomogeneity. A gain-map was then produced by converting all pixel values in the average into fractions with mean of one. The resultant gain-map of the plate was used to normalize subsequent single images to correct for spatial gain fluctuation. To validate performance, the normalized NPS (NNPS) for all images was calculated both with and without the gain-map correction. Variations in the quality of correction due to exposure levels, beam voltage/spectrum, CR reader used, and registration were investigated. RESULTS: The NNPS with plate-specific gain-map correction showed improvement over the noncorrected case over the range of frequencies from 0.15 to 2.5 mm(-1). At high exposure (40 mR), NNPS was 50%-90% better with gain-map correction than without. A small further improvement in NNPS was seen from carefully registering the gain-map with subsequent images using small fiducial dots, because of slight misregistration during scanning. Further improvement was seen in the NNPS from scaling the gain map about the mean to account for different beam spectra. CONCLUSIONS: This study demonstrates that a simple gain-map can be used to correct for the fixed-pattern noise in a given plate and thus improve the DQE of CR imaging. Such a method could easily be implemented by manufacturers because each plate has a unique bar code and the gain-map for all plates associated with a reader could be stored for future retrieval. These experiments indicated that an improvement in NPS (and hence, DQE) is possible, depending on exposure level, over a wide range of frequencies with this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protons accelerated by a picosecond laser pulse have been used to radiograph a 500 mu m diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 mu m and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion. Asymmetries were diagnosed both during the early and stagnation stages of the implosion. Comparison with analytic scattering theory and simple Monte Carlo simulations were consistent with a 3 +/- 1 g/cm(3) core with diameter 85 +/- 10 mu m. Scaling simulations show that protons > 50 MeV are required to diagnose asymmetry in ignition scale conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-Mev proton beams generated by target normal sheath acceleration (TNSA) during the interaction of an ultra intense laser beam (Ia parts per thousand yen10(19) W/cm(2)) with a thin metallic foil (thickness of the order of a few tens of microns) are particularly suited as a particle probe for laser plasma experiments. The proton imaging technique employs a laser-driven proton beam in a point-projection imaging scheme as a diagnostic tool for the detection of electric fields in such experiments. The proton probing technique has been applied in experiments of relevance to inertial confinement fusion (ICF) such as laser heated gasbags and laser-hohlraum experiments. The data provides direct information on the onset of laser beam filamentation and on the plasma expansion in the hohlraum's interior, and confirms the suitability and usefulness of this technique as an ICF diagnostic.