859 resultados para Radiofrequency signals


Relevância:

60.00% 60.00%

Publicador:

Resumo:

a-C:H films were grown by plasma-enhanced chemical vapor deposition in atmospheres composed by 30 % of acetylene and 70 % of argon. Radiofrequency signal (RF) was supplied to the sample holder to generate the depositing plasmas. Deposition time and pressure were chosen 300 s and 9.5 Pa, respectively, while the excitation power changed from 5 to 125 W. The films were exposed to a post-deposition treatment during 300 s in RF-plasmas (13.56 MHz, 70 W) excited from 13.33 Pa of SF6. Raman and X-ray photoelectron spectroscopy were used to evaluate the microstructure and chemical composition of the films. The thickness was measured by perfilometry. Hardness and friction coefficient were determined from nanoindentation and risk tests, respectively. With increasing power, the film thickness reduced, but a further shrinkage occurred upon the fluorination process. After that, the molecular structure was observed to vary with deposition power. Fluorine was detected in all samples replacing H atoms. Consistently with the elevation in the proportion of C atoms with sp3 hybridization, hardness increased from 2 to 18 GPa. Friction coefficient also increased with power due to the generation of dangling bonds during the fluorination process. © 2012 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to assess the feasibility, safety and success of a system which uses radiofrequency energy (RFE) rather than a device for percutaneous closure of patent foramen ovale (PFO). METHODS: Sixteen patients (10 men, 6 women, mean age 50 years) were included in the study. All of them had a proven PFO with documented right-to-left shunt (RLS) after Valsalva manoeuvre (VM) during transoesophageal echocardiography (TEE). The patients had an average PFO diameter of 6 +/- 2 mm at TEE and an average of 23 +/- 4 microembolic signals (MES) in power M-mode transcranial Doppler sonography (pm-TCD), measured over the middle cerebral artery. An atrial septal aneurysm (ASA) was present in 7 patients (44%). Balloon measurement, performed in all patients, revealed a stretched PFO diameter of 8 +/- 3 mm. In 2 patients (stretched diameter 11 and 14 mm respectively, both with ASA >10 mm), radiofrequency was not applied (PFO too large) and the PFO was closed with an Amplatzer PFO occluder instead. A 6-month follow-up TEE was performed in all patients. RESULTS: There were no serious adverse events during the procedure or at follow-up (12 months average). TEE 6 months after the first RFE procedure showed complete closure of the PFO in 50% of the patients (7/14). Closure appeared to be influenced by PFO diameter, complete closure being achieved in 89% (7/8) with a balloon-stretched diameter < or =7 mm but in none of the patients >7 mm. Only one of the complete closure patients had an ASA. Of the remainder, 4 (29%) had an ASA. Although the PFO was not completely closed in this group, some reduction in the diameter of the PFO and in MES was documented by TEE and pm-TCD with VM. Five of the 7 residual shunt patients received an Amplatzer PFO occluder. Except for one patient with a minimal residual shunt, all showed complete closure of PFO at 6-month follow-up TEE and pm-TCD with VM. The other two refused a closure device. CONCLUSIONS: The results confirm that radiofrequency closure of the PFO is safe albeit less efficacious and more complex than device closure. The technique in its current state should not be attempted in patients with a balloon-stretched PFO diameter >7 mm and an ASA.