969 resultados para Radioactive decay
Resumo:
Half-lives of radionuclides span more than 50 orders of magnitude. We characterize the probability distribution of this broad-range data set at the same time that explore a method for fitting power-laws and testing goodness-of-fit. It is found that the procedure proposed recently by Clauset et al. [SIAM Rev. 51, 661 (2009)] does not perform well as it rejects the power-law hypothesis even for power-law synthetic data. In contrast, we establish the existence of a power-law exponent with a value around 1.1 for the half-life density, which can be explained by the sharp relationship between decay rate and released energy, for different disintegration types. For the case of alpha emission, this relationship constitutes an original mechanism of power-law generation.
Resumo:
"Physics thesis under the direction of Professor Sherwood K. Haynes."
Resumo:
A matricial method to solve the decay chain differential equations system is presented. The quantity of each nuclide in the chain at a time t may be evaluated by analytical expressions obtained in a simple way using recurrence relations. This method may be applied to problems of radioactive buildup and decay and can be easily implemented computationally. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coal contains trace quantities of natural radionuclides such as Th-232, U-235, U-238, as well as their radioactive decay products and 40K. These radionuclides can be released as fly ash in atmospheric emissions from coal-fired power plants, dispersed into the environment and deposited on the surrounding top soils. Therefore, the natural radiation background level is enhanced and consequently increase the total dose for the nearby population. A radiation monitoring programme was used to assess the external dose contribution to the natural radiation background, potentially resulting from the dispersion of coal ash in past atmospheric emissions. Radiation measurements were carried out by gamma spectrometry in the vicinity of a Portuguese coal-fired power plant. The radiation monitoring was achieved both on and off site, being the boundary delimited by a 20 km circle centered in the stacks of the coal plant. The measured radionuclides concentrations for the uranium and thorium series ranged from 7.7 to 41.3 Bq/kg for Ra-226 and from 4.7 to 71.6 Bq/kg for Th-232, while K-40 concentrations ranged from 62.3 to 795.1 Bq/kg. The highest values were registered near the power plant and at distances between 6 and 20 km from the stacks, mainly in the prevailing wind direction. The absorbed dose rates were calculated for each sampling location: 13.97-84.00 ηGy/h, while measurements from previous studies carried out in 1993 registered values in the range of 16.6-77.6 ηGy/h. The highest values were registered at locations in the prevailing wind direction (NW-SE). This study has been primarily done to assess the radiation dose rates and exposure to the nearby population in the surroundings of a coal-fired power plant. The results suggest an enhancement or at least an influence in the background radiation due to the coal plant past activities.
Resumo:
The nonmesonic decay of the hypertriton is calculated based on a hypertriton wave function and 3N scattering states, which are rigorous solutions of three-body Faddeev equations using realistic NN and hyperon-nucleon interactions. The pion exchange together with heavier meson exchanges for the ¿N¿NN transition is considered. The total nonmesonic decay rate is found to be 0.5% of the free ¿ decay rate. Integrated as well as differential decay rates are given. The p- and n-induced decays are discussed thoroughly and it is shown that the corresponding total rates cannot be measured individually.
Resumo:
The phenomenon of anomalous fluctuations associated with the decay of an unstable state is analyzed in the presence of multiplicative noise. A theory is presented and compared with a numerical simulation. Our results allow us to distinguish the roles of additive and multiplicative noise in the nonlinear relaxation process. We suggest the use of experiments on transient dynamics to understand the effect of these two sources of noise in problems in which parametric noise is thought to be important, such as dye lasers.
Resumo:
The nonmesonic decay of the hypertriton is calculated based on a hypertriton wave function and 3N scattering states, which are rigorous solutions of three-body Faddeev equations using realistic NN and hyperon-nucleon interactions. The pion exchange together with heavier meson exchanges for the ¿N¿NN transition is considered. The total nonmesonic decay rate is found to be 0.5% of the free ¿ decay rate. Integrated as well as differential decay rates are given. The p- and n-induced decays are discussed thoroughly and it is shown that the corresponding total rates cannot be measured individually.
Resumo:
A desintegração radioativa é um processo aleatório e a estimativa de todas as medidas associadas é governada por leis estatísticas. Os perfis de taxas de contagem são sempre "ruidosos" quando utilizados períodos curtos como um segundo para cada medida. Os filtros utilizados e posteriormente as correções feitas no processamento atual de dados gamaespectrométricos não são suficientes para remover ou diminuir, consideravelmente, o ruído oriundo do espectro. Dois métodos estatísticos que atuam diretamente nos dados coletados, isto é, nos espectros, vêm sendo sugeridos na literatura para remover e minimizar estes ruídos remanescentes o Noise-Adjusted Singular Value Decomposition - NASVD e Maximum Noise Fraction - MNF. Estes métodos produzem uma redução no ruído de forma significativa. Neste trabalho eles foram implementados dentro do ambiente de processamento do software Oasis Montaj e aplicados na área compreendida pelos blocos I e II do levantamento aerogeofísico que recobre a porção oeste da Província Mineral do Tapajós, entre os Estados do Pará e Amazonas. Os dados filtrados e não-filtrados com as técnicas de NASVD e MNF foram processados com os parâmetros e constantes fornecidos pela empresa Lasa Engenharia e Prospecções S.A., sendo estes comparados. Os resultados da comparação entre perfis e mapas apresentaram-se de forma promissora, pois houve um ganho na resolução dos produtos.
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.
Resumo:
Over the past few decades there has been some discussion concerning the increase of the natural background radiation originated by coal-fired power plants, due to the uranium and thorium content present in combustion ashes. The radioactive decay products of uranium and thorium, such as radium, radon, polonium, bismuth and lead, are also released in addition to a significant amount of 40K. Since the measurement of radioactive elements released by the gaseous emissions of coal power plants is not compulsory, there is a gap of information concerning this situation. Consequently, the prediction of dispersion and mobility of these elements in the environment, after their release, is based on limited data and the radiological impact from the exposure to these radioactive elements is unknown. This paper describes the methodology that is being developed to assess the radiological impact due to the raise in the natural background radiation level originated by the release and dispersion of the emitted radionuclides. The current investigation is part of a research project that is undergoing in the vicinity of Sines coal-fired power plant (south of Portugal) until 2013. Data from preliminary stages are already available and possible of interpretation.
Resumo:
The real part of the optical potential for heavy ion elastic scattering is obtained by double folding of the nuclear densities with a density-dependent nucleon-nucleon effective interaction which was successful in describing the binding, size, and nucleon separation energies in spherical nuclei. A simple analytical form is found to differ from the resulting potential considerably less than 1% all through the important region. This analytical potential is used so that only few points of the folding need to be computed. With an imaginary part of the Woods-Saxon type, this potential predicts the elastic scattering angular distribution in very good agreement with experimental data, and little renormalization (unity in most cases) is needed.