960 resultados para Radio-loud
Resumo:
We investigate the X-ray properties of the Parkes sample of Bat-spectrum radio sources using data from the ROSAT All-Sky Survey and archival pointed PSPC observations. In total, 163 of the 323 sources are detected. For the remaining 160 sources, 2 sigma upper limits to the X-ray flux are derived. We present power-law photon indices in the 0.1-2.4 keV energy band for 115 sources, which were determined either with a hardness ratio technique or from direct fits to pointed PSPC data if a sufficient number of photons were available. The average photon index is <Gamma > = 1.95(-0.12)(+0.13) for flat-spectrum radio-loud quasars, <Gamma > = 1.70(-0.24)(+0.23) for galaxies, and <Gamma > = 2.40(-0.31)(+0.12) for BL Lac objects. The soft X-ray photon index is correlated with redshift and with radio spectral index in the sense that sources at high redshift and/or with flat (or inverted) radio spectra have flatter X-ray spectra on average. The results are in accord with orientation-dependent unification schemes for radio-loud active galactic nuclei. Webster et al. discovered many sources with unusually red optical continua among the quasars of this sample, and interpreted this result in terms of extinction by dust. Although the X-ray spectra in general do not show excess absorption, we find that low-redshift optically red quasars have significantly lower soft X-ray luminosities on average than objects with blue optical continua. The difference disappears for higher redshifts, as is expected for intrinsic absorption by cold gas associated with the dust. In addition, the scatter in log(f(x)/f(o)) is consistent with the observed optical extinction, contrary to previous claims based on optically or X-ray selected samples. Although alternative explanations for the red optical continua cannot be excluded with the present X-ray data, we note that the observed X-ray properties are consistent with the idea that dust plays an important role in some of the radio-loud quasars with red optical continua.
Resumo:
We report millimetre-wave continuum observations of the X-ray binaries Cygnus X-3, SS 433, LSI+61 303, Cygnus X-1 and GRS 1915+105. The observations were carried out with the IRAM 30 m-antenna at 250 GHz (1.25 mm) from 1998 March 14 to March 20. These millimetre measurements are complemented with centimetre observations from the Ryle Telescope, at 15 GHz (2.0 cm) and from the Green Bank Interferometer at 2.25 and 8.3 GHz (13 and 3.6 cm). Both Cygnus X-3 and SS 433 underwent moderate flaring events during our observations, whose main spectral evolution properties are described and interpreted. A significant spectral steepening was observed in both sources during the flare decay, that is likely to be caused by adiabatic expansion, inverse Compton and synchrotron losses. Finally, we also report 250 GHz upper limits for three additional undetected X-ray binary stars: LSI+65 010, LSI+61 235 and X Per.
Resumo:
The origin of Broad Absorption Line Quasars (BAL QSOs) is still an open issue. Accounting for ~20% of the QSO population, these objects present broad absorption lines in their optical spectra generated from outflows with velocities up to 0.2 c. Nowadays, the hypotheses about their nature are principally related to orientation or evolutionary scenarios. In the first one, absorption lines are produced by outflows originated by the accretion disk, basically present in all QSOs, but seen only when they intercept the line of sight. In the second hypothesis, BAL QSOs would be young or recently re-fueled QSOs, still ejecting their dust cocoon. In this case orientation would not play a role, since the absorption features would be produced by spherically ejected matter. In this work we present the results of a multi-frequency study of a Radio-Loud BAL QSO sample, and a comparison sample of Radio-Loud non-BAL QSOs. We performed observations from radio to Near-Infrared, aiming at collecting useful informations about the orientation, the age, and the morphologies of these objects. Various techniques have been applied, including local and continental radio interferometry, single dish observations and spectroscopy. The comparison with the non-BAL QSO sample allows us to conclude that no particular orientation is present in BAL QSOs. Moreover, various morphologies and ages can be found, analogously to "normal" QSOs. Thus, the solution to this astrophysical problem seems not to reside in a peculiarity of the BAL QSO subclass with respect to non-BAL QSOs, since both the studied models do not completely explain the observed characteristics. Further experiments with future instrumentation will allow us to underline useful differences and test the physical conditions in BAL QSOs.
Resumo:
We present the results of a comparison between the optical morphologies of a complete sample of 46 southern 2 Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7) and those of two control samples of quiescent early-type galaxies: 55 ellipticals at redshifts z ≤ 0.01 from the Observations of Bright Ellipticals at Yale (OBEY) survey, and 107 early-type galaxies at redshifts 0.2 < z < 0.7 in the Extended Groth Strip (EGS). Based on these comparisons, we discuss the role of galaxy interactions in the triggering of powerful radio galaxies (PRGs). We find that a significant fraction of quiescent ellipticals at low and intermediate redshifts show evidence for disturbed morphologies at relatively high surface brightness levels, which are likely the result of past or on-going galaxy interactions. However, the morphological features detected in the galaxy hosts of the PRGs (e.g. tidal tails, shells, bridges, etc.) are up to 2 mag brighter than those present in their quiescent counterparts. Indeed, if we consider the same surface brightness limits, the fraction of disturbed morphologies is considerably smaller in the quiescent population (53 per cent at z < 0.2 and 48 per cent at 0.2 ≤ z < 0.7) than in the PRGs (93 per cent at z < 0.2 and 95 per cent at 0.2 ≤ z < 0.7 considering strong-line radio galaxies only). This supports a scenario in which PRGs represent a fleeting active phase of a subset of the elliptical galaxies that have recently undergone mergers/interactions. However, we demonstrate that only a small proportion (≲20 per cent) of disturbed early-type galaxies are capable of hosting powerful radio sources.
Resumo:
We describe the motivation, design, and implementation of the CORNISH survey, an arcsecondresolution radio continuum survey of the inner galactic plane at 5 GHz using the Very Large Array (VLA). It is a blind survey coordinated with the northern SpitzerGLIMPSE I region covering 10°
Resumo:
The aim of this PhD thesis is the study of the nuclear properties of radio loud AGN. Multiple and/or recent mergers in the host galaxy and/or the presence of cool core in galaxy clusters can play a role in the formation and evolution of the radio source. Being a unique class of objects (Lin & Mohr 2004), we focus on Brightest Cluster Galaxies (BCGs). We investigate their parsec scale radio emission with VLBI (Very Long Baseline Interferometer) observations. From literature or new data , we collect and analyse VLBA (Very Long Baseline) observations at 5 GHz of a complete sample of BCGs and ``normal'' radio galaxies (Bologna Complete Sample , BCS). Results on nuclear properties of BCGs are coming from the comparison with the results for the Bologna COmplete Sample (BCS). Our analysis finds a possible dichotomy between BCGs in cool-core clusters and those in non-cool-core clusters. Only one-sided BCGs have similar kinematic properties with FRIs. Furthermore, the dominance of two-sided jet structures only in cooling clusters suggests sub-relativistic jet velocities. The different jet properties can be related to a different jet origin or to the interaction with a different ISM. We larger discuss on possible explanation of this.
The gaseous environment of radio galaxies: a new perspective from high-resolution x-ray spectroscopy
Resumo:
It is known that massive black holes have a profound effect on the evolution of galaxies, and possibly on their formation by regulating the amount of gas available for the star formation. However, how black hole and galaxies communicate is still an open problem, depending on how much of the energy released interacts with the circumnuclear matter. In the last years, most studies of feedback have primarily focused on AGN jet/cavity systems in the most massive galaxy clusters. This thesis intends to investigate the feedback phenomena in radio--loud AGNs from a different perspective studying isolated radio galaxies, through high-resolution spectroscopy. In particular one NLRG and three BLRG are studied, searching for warm gas, both in emission and absorption, in the soft X-ray band. I show that the soft spectrum of 3C33 originates from gas photoionized by the central engine. I found for the first time WA in 3C382 and 3C390.3. I show that the observed warm emitter/absorbers is not uniform and probably located in the NLR. The detected WA is slow implying a mass outflow rate and kinetic luminosity always well below 1% the L(acc) as well as the P(jet). Finally the radio--loud properties are compared with those of type 1 RQ AGNs. A positive correlation is found between the mass outflow rate/kinetic luminosity, and the radio loudness. This seems to suggest that the presence of a radio source (the jet?) affects the distribution of the absorbing gas. Alternatively, if the gas distribution is similar in Seyferts and radio galaxies, the M(out) vs rl relation could simply indicate a major ejection of matter in the form of wind in powerful radio AGNs.
Resumo:
Lo scenario di unificazione degli AGN caratterizza le molteplici proprietà di questi oggetti in termini del differente angolo di vista rispetto ad un sistema costituito da un toro oscurante, un disco di accrescimento che alimenta il SMBH e nubi di gas che circondano il buco nero. Circa il 10% degli AGN sono forti sorgenti radio. Questi oggetti, detti AGN Radio-Loud, sono caratterizzati da getti relativistici emessi trasversalmente rispetto al disco di accrescimento e comprendono le radio galassie e i blazar. In accordo con il modello unificato, le radio galassie (MAGN), rappresentano i blazar visti a grandi angoli di inclinazione del getto rispetto alla linea di vista. Nei blazar la radiazione emessa dai getti su scale del pc viene amplificata da effetti relativistici dando origine a spettri piatti con elevata polarizzazione ottica e forte variabilità. Questi oggetti rappresentano le sorgenti più brillanti identificate nel cielo gamma extragalattico. I MAGN, a differenza dei blazar, mostrano spettri ripidi e strutture radio quasi simmetriche. In queste sorgenti, l'effetto del Doppler boosting è meno evidente a causa del grande angolo di inclinazione del getto. In soli 3 mesi di osservazioni scientifiche effettuate con il satellite Fermi è stata rivelata emissione gamma da parte delle radio galassie NGC 1275 e Cen A. I MAGN rappresentano una nuova classe di sorgenti gamma. Tuttavia, il numero di radio galassie rivelate è sorprendentemente piccolo ponendo degli interrogativi sui meccanismi di emissione alle alte energie di questi oggetti. Nel presente lavoro di tesi, si analizzeranno i dati gamma raccolti dal LAT durante i primi 5 anni di osservazioni scientifiche per un campione di 10 radio galassie più brillanti selezionate dai cataloghi B2 e BCS. L'obiettivo principale sarà migliorare la statistica e cercare di comprendere la natura dell'emissione alle alte energie da parte delle radio galassie.
Resumo:
I Nuclei Galattici Attivi (AGN) sono sorgenti luminose e compatte alimentate dall'accrescimento di materia sul buco nero supermassiccio al centro di una galassia. Una frazione di AGN, detta "radio-loud", emette fortemente nel radio grazie a getti relativistici accelerati dal buco nero. I Misaligned AGN (MAGN) sono sorgenti radio-loud il cui getto non è allineato con la nostra linea di vista (radiogalassie e SSRQ). La grande maggioranza delle sorgenti extragalattiche osservate in banda gamma sono blazar, mentre, in particolare in banda TeV, abbiamo solo 4 MAGN osservati. Lo scopo di questa tesi è valutare l'impatto del Cherenkov Telescope Array (CTA), il nuovo strumento TeV, sugli studi di MAGN. Dopo aver studiato le proprietà dei 4 MAGN TeV usando dati MeV-GeV dal telescopio Fermi e dati TeV dalla letteratura, abbiamo assunto come candidati TeV i MAGN osservati da Fermi. Abbiamo quindi simulato 50 ore di osservazioni CTA per ogni sorgente e calcolato la loro significatività. Assumendo una estrapolazione diretta dello spettro Fermi, prevediamo la scoperta di 9 nuovi MAGN TeV con il CTA, tutte sorgenti locali di tipo FR I. Applicando un cutoff esponenziale a 100 GeV, come forma spettrale più realistica secondo i dati osservativi, prevediamo la scoperta di 2-3 nuovi MAGN TeV. Per quanto riguarda l'analisi spettrale con il CTA, secondo i nostri studi sarà possibile ottenere uno spettro per 5 nuove sorgenti con tempi osservativi dell'ordine di 250 ore. In entrambi i casi, i candidati migliori risultano essere sempre sorgenti locali (z<0.1) e con spettro Fermi piatto (Gamma<2.2). La migliore strategia osservativa per ottenere questi risultati non corrisponde con i piani attuali per il CTA che prevedono una survey non puntata, in quanto queste sorgenti sono deboli, e necessitano di lunghe osservazioni puntate per essere rilevate (almeno 50 ore per studi di flusso integrato e 250 per studi spettrali).
Resumo:
We measure the spectral properties of a representative sub-sample of 187 quasars, drawn from the Parkes Half-Jansky, Flat-radio-spectrum Sample (PHFS). Quasars with a wide range of rest-frame optical/UV continuum slopes are included in the analysis: their colours range over 2 < B-K < 7. We present composite spectra of red and blue sub-samples of the PHFS quasars. and tabulate their emission line properties. The median Hbeta and [0 111] emission line equivalent widths of the red quasar sub-sample are a factor of ten weaker than those of the blue quasar sub-sample. No significant differences are seen between the equivalent width distributions of the C IV, C III] and Mg 11 lines. Both the colours and the emission line equivalent widths of the red quasars can be explained by the addition of a featureless red synchrotron continuum component to an otherwise normal blue quasar spectrum. The red synchrotron component must have a spectrum at least as red as a power-law of the form F-nu proportional to nu(-2.8). The relative strengths of the blue and red components span two orders of magnitude at rest-frame 500 nm. The blue component is weaker relative to the red component in low optical luminosity sources. This suggests that the fraction of accretion energy going into optical emission from the jet is greater in low luminosity quasars. This correlation between colour and luminosity may be of use in cosmological distance scale work. This synchrotron model does not, however, fit similar to10% of the quasars, which have both red colours and high equivalent width emission lines. We hypothesise that these red, strong-lined quasars have intrinsically weak Big Blue Bumps. There is no discontinuity in spectral properties between the BL Lac objects in our sample and the other quasars. BL Lac objects appear to be the red, low equivalent width tail of a continuous distribution. The synchrotron emission component only dominates the spectrum at longer wavelengths, so existing BL Lac surveys will be biased against high redshift objects. This will affect measurements of BL Lac evolution. The blue PHFS quasars have significantly higher equivalent width C IV, Hbeta and [0 111] emission than a matched sample of optically selected QSOs.
Resumo:
In this dissertation, Active Galactic Nuclei (AGN) and their host galaxies are discussed. Together with transitional events, such as supernovae and gamma-ray bursts, AGN are the most energetic phenomena in the Universe. The dominant fraction of their luminosity originates from the center of a galaxy, where accreting gas falls into a supermassive black hole, converting gravitational energy to radiation. AGN have a wide range of observed properties: e.g. in their emission lines, radio emission, and variability. Most likely, these properties depend significantly on their orientation to our line-of-sight, and to unify AGN into physical classes it is crucial to observe their orientation-independent properties, such as the host galaxies. Furthermore, host galaxy studies are essential to understand the formation and co-evolution of galactic bulges and supermassive black holes. In this thesis, the main focus is on observationally characterizing AGN host galaxies using optical and near-infrared imaging and spectroscopy. BL Lac objects are a class of AGN characterized by rapidly variable and polarized continuum emission across the electromagnetic spectrum, and coredominated radio emission. The near-infrared properties of intermediate redshift BL Lac host galaxies are studied in Paper I. They are found to be large elliptical galaxies that are more luminous than their low redshift counterparts suggesting a strong luminosity evolution, and a contribution from a recent star formation episode. To analyze the stellar content of galaxies in more detail multicolor data, especially observations at blue wavelengths, are essential. In Paper III, optical - near-infrared colors and color gradients are derived for low redshift BL Lac host galaxies. They show bluer colors and steeper color gradients than inactive ellipticals which, most likely, are caused by a relatively young stellar population indicating a different evolutionary stage between AGN hosts and inactive ellipticals. In Paper II, near-infrared imaging of intermediate redshift radio-quiet quasar hosts is used to study their luminosity evolution. The hosts are large elliptical galaxies, but they are systematically fainter than the hosts of radio-loud quasars at similar redshifts, suggesting a link between the luminosity of the host galaxies and the radio properties of AGN. In Paper IV, the characteristics of near-infrared stellar absorption features of low redshift radio galaxies are compared with those of inactive early-type galaxies. The comparison suggests that early-type galaxies with AGN are in a different evolutionary stage than their inactive counterparts. Moreover, radio galaxies are found to contain stellar populations containing both old and intermediate age components.
Resumo:
I investigate the issue of whether the various subclasses of radio-loud galaxies are intrinsically the same but have been classified differently mainly due to their being viewed from different directions. Evidence for the two key elements of this popular version of the "unified scheme (US)," relativistic jets and nuclear tori, is updated. The case for the torus opening angle increasing with the radio luminosity of the active galactic nucleus (AGN) is freshly argued. Radio-loud AGN are particularly suited for testing the US, since their structures and polarization properties on different scales, as well as their overall radio sizes, provide useful statistical indicators of the relative orientations of their various subclasses. I summarize recent attempts to bring under a single conceptual framework the USs developed for radio-moderate [Fanaroff-Riley type I (FRI)] and radio-powerful (FRII) AGN. By focusing on FRII radio sources, I critically examine the recent claims of conflict with the US, based on the statistics of radio-size measurements for large, presumably orientation-independent, samples with essentially complete optical identifications. Possible ways of reconciling these results, and also the ones based on very-long-baseline radio interferometry polarimetric observations, with the US are pointed out. By incorporating a highly plausible temporal evolution of radio source properties into the US, I outline a scenario that allows the median linear size of quasars to approach, or even exceed, that of radio galaxies, as samples with decreasing radio luminosity are observed. Thus, even though a number of issues remain to be fully resolved, the scope of unified models continues to expand.
Resumo:
Extended cluster radio galaxies show different morphologies com- pared to those found isolated in the field. Indeed, symmetric double radio galaxies are only a small percentage of the total content of ra- dio loud cluster galaxies, which show mainly tailed morphologies (e.g. O’Dea & Owen, 1985). Moreover, cluster mergers can deeply affect the statistical properties of their radio activity. In order to better understand the morphological and radio activity differences of the radio galaxies in major mergeing and non/tidal-merging clusters, we performed a multifrequency study of extended radio galax- ies inside two cluster complexes, A3528 and A3558. They belong to the innermost region of the Shapley Concentration, the most massive con- centration of galaxy clusters (termed supercluster) in the local Universe, at average redshift z ≈ 0.043. We analysed low frequency radio data performed at 235 and 610 MHz with Giant Metrewave Radio Telescope (GMRT) and we combined them with proprietary and literature observations, in order to have a wide frequency range (150 MHz to 8.4 GHz) to perform the spectral analysis. The low frequency images allowed us to carry out a detailed study of the radio tails and diffuse emission found in some cases. The results in the radio band were also qualitatively compared with the X-ray information coming from XMM-Newton observations, in order to test the interaction between radio galaxies and cluster weather. We found that the brightest central galaxies (BCGs) in the A3528 cluster complex are powerful and present substantial emission from old relativistic plasma characterized by a steep spectrum (α > 2). In the light of observational pieces of evidence, we suggest they are possible re-started radio galaxies. On the other hand, the tailed radio galaxies trace the host galaxy motion with respect to the ICM, and our find- ings is consistent with the dynamical interpretation of a tidal interaction (Gastaldello et al. 2003). On the contrary, the BCGs in the A3558 clus- ter complex are either quiet or very faint radio galaxies, supporting the hypothesis that clusters mergers quench the radio emission from AGN.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Aims. We calculate the theoretical event rate of gamma-ray bursts (GRBs) from the collapse of massive first-generation (Population III; Pop III) stars. The Pop III GRBs could be super-energetic with the isotropic energy up to E(iso) greater than or similar to 10(55-57) erg, providing a unique probe of the high-redshift Universe. Methods. We consider both the so-called Pop III.1 stars (primordial) and Pop III.2 stars (primordial but affected by radiation from other stars). We employ a semi-analytical approach that considers inhomogeneous hydrogen reionization and chemical evolution of the intergalactic medium. Results. We show that Pop III.2 GRBs occur more than 100 times more frequently than Pop III.1 GRBs, and thus should be suitable targets for future GRB missions. Interestingly, our optimistic model predicts an event rate that is already constrained by the current radio transient searches. We expect similar to 10-10(4) radio afterglows above similar to 0.3 mJy on the sky with similar to 1 year variability and mostly without GRBs (orphans), which are detectable by ALMA, EVLA, LOFAR, and SKA, while we expect to observe maximum of N < 20 GRBs per year integrated over at z > 6 for Pop III.2 and N < 0.08 per year integrated over at z > 10 for Pop III.1 with EXIST, and N < 0.2 for Pop III.2 GRBs per year integrated over at z > 6 with Swift.