997 resultados para Radiation Measurement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

These minutes report on colloquium on the methodology of radiation measurement under water. The meeting was held on 3-5 January 1957, at the Biological Station, Lunz, Austria. The participants of the colloquium discussed various methodologies of radiation measurements, basic methods such as Secchi Disc and underwater photometer as well as specialist equipment like the absolute radiation apparatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Clinical oncologists and cancer researchers benefit from information on the vascularization or non-vascularization of solid tumors because of blood flow's influence on three popular treatment types: hyperthermia therapy, radiotherapy, and chemotherapy. The objective of this research is the development of a clinically useful tumor blood flow measurement technique. The designed technique is sensitive, has good spatial resolution, in non-invasive and presents no risk to the patient beyond his usual treatment (measurements will be subsequent only to normal patient treatment).^ Tumor blood flow was determined by measuring the washout of positron emitting isotopes created through neutron therapy treatment. In order to do this, several technical and scientific questions were addressed first. These questions were: (1) What isotopes are created in tumor tissue when it is irradiated in a neutron therapy beam and how much of each isotope is expected? (2) What are the chemical states of the isotopes that are potentially useful for blood flow measurements and will those chemical states allow these or other isotopes to be washed out of the tumor? (3) How should isotope washout by blood flow be modeled in order to most effectively use the data? These questions have been answered through both theoretical calculation and measurement.^ The first question was answered through the measurement of macroscopic cross sections for the predominant nuclear reactions in the body. These results correlate well with an independent mathematical prediction of tissue activation and measurements of mouse spleen neutron activation. The second question was addressed by performing cell suspension and protein precipitation techniques on neutron activated mouse spleens. The third and final question was answered by using first physical principles to develop a model mimicking the blood flow system and measurement technique.^ In a final set of experiments, the above were applied to flow models and animals. The ultimate aim of this project is to apply its methodology to neutron therapy patients. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work describes the measurement effort for direct normal irradiance (DNI) evaluation in the sunny south of Portugal, with a network of eight radiation measurement stations in several locations (including Évora) providing a good coverage of the region. This new initiative for DNI measurement will still need many years (typically 10 or more) to produce a time series which can claim having long term statistical value. This problem can, however, be temporarily mitigated by measuring DNI at the same time as GHI and DHI, in a place where long term series dating back, already exist for those two. It so happens that a long term series (20 years) of global and diffuse solar irradiation exists for the location Évora. So the expectation is to establish correlations with the goal of attributing at least some long term statistical significance to the short and recent DNI series. The paper describes the setup of the measuring stations and presents the preliminary measurements obtained. It further presents the first correlations of monthly averages between normal beam (DNI), global and diffuse radiation. It then uses these correlations, admittedly without acceptable statistical significance (short series of less than one year of measured data), to exemplify how to get a prediction of long term DNI for Évora. This preliminary obtained value is compared to that predicted by the commercial data from Meteonorm.