951 resultados para Radiation Induced Skin Reactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the effects of any interventions which aim to prevent or manage radiation-induced skin reactions in people with cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Radiation-induced skin reaction (RISR) is one of the most common and distressing side effects of radiotherapy in patients with cancer. It is featured with swelling, redness, itching, pain, breaks in skin, discomfort, and a burning sensation. There is a lack of convincing evidence supporting any single practice in the prevention or management of RISR. Methods/Designs: This double-blinded randomised controlled trial aims to investigate the effects of a natural oil-based emulsion containing allantoin (as known as Moogoo Udder Cream®) versus aqueous cream in reducing RISR, improving pain, itching and quality of life in this patient group. One group will receive Moogoo Udder Cream®. Another group will receive aqueous cream. Outcome measures will be collected using patient self-administered questionnaire, interviewer administered questionnaire and clinician assessment at commencement of radiotherapy, weekly during radiotherapy, and four weeks after the completion of radiotherapy. Discussion: Despite advances of radiologic advances and supportive care, RISR are still not well managed. There is a lack of efficacious interventions in managing RISR. While anecdotal evidence suggests that Moogoo Udder Cream® may be effective in managing RISR, research is needed to substantiate this claim. This paper presents the design of a double blind randomised controlled trial that will evaluate the effects of Moogoo Udder Cream® versus aqueous cream for managing in RISR in patients with cancer. Trial registration: ACTRN 12612000568819

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Radiation-induced skin reaction (RISR) is a common side effect that affects the majority of cancer patients receiving radiation treatment. RISR is often characterised by swelling,redness, pigmentation, fibrosis, and ulceration, pain, warmth, burning, and itching of the skin. The aim of this systematic review was to assess the effects of interventions which aim to prevent or manage RISR in people with cancer. Methods We searched the following databases up to November 2012: Cochrane Skin Group Specialised Register, CENTRAL (2012, Issue 11), MEDLINE (from 1946), EMBASE (from 1974), PsycINFO (from 1806), CINAHL (from 1981) and LILACS (from 1982). Randomized controlled trials evaluating interventions for preventing or managing RISR in cancer patients were included. The primary outcomes were development of RISR, and levels of RISR and symptom severity. Secondary outcomes were time taken to develop erythema or dry desquamation; quality of life; time taken to heal, a number of skin reaction and symptom severity measures; cost, participant satisfaction; ease of use and adverse effects. Where appropriate, we pooled results of randomized controlled trials using mean differences (MD) or odd ratios (OR) with 95% confidence intervals (CI). Results Forty-seven studies were included in this review. These evaluated six types of interventions (oral systemic medications; skin care practices; steroidal topical therapies; non-steroidal topical therapies; dressings and other). Findings from two meta-analyses demonstrated significant benefits of oral Wobe-Mugos E for preventing RISR (OR 0.13 (95% CI 0.05 to 0.38)) and limiting the maximal level of RISR (MD −0.92 (95% CI −1.36 to −0.48)). Another meta-analysis reported that wearing deodorant does not influence the development of RISR (OR 0.80 (95% CI 0.47 to 1.37)). Conclusions Despite the high number of trials in this area, there is limited good, comparative research that provides definitive results suggesting the effectiveness of any single intervention for reducing RISR. More research is required to demonstrate the usefulness of a wide range of products that are being used for reducing RISR. Future efforts for reducing RISR severity should focus on promising interventions, such as Wobe-Mugos E and oral zinc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To investigate the effects of a natural oil-based emulsion containing allantoin versus aqueous cream for preventing and managing radiation induced skin reactions (RISR). Methods and Materials A total of 174 patients were randomised and participated in the study. Patients either received Cream 1 (the natural oil-based emulsion containing allantoin) or Cream 2 (aqueous cream). Skin toxicity, pain, itching and skin-related quality of life scores were collected for up to four weeks after radiation treatment. Results Patients who received Cream 1 had a significantly lower average level of Common Toxicity Criteria at week 3 (p<0.05), but had statistically higher average levels of skin toxicity at weeks 7, 8 and 9 (all p<0.001). Similar results were observed when skin toxicity was analysed by grades. With regards to pain, patients in the Cream 2 group had a significantly higher average level of worst pain (p<0.05) and itching (p=0.046) compared to the Cream 1 group at week 3, however these differences were not observed at other weeks. In addition, there was a strong trend for Cream 2 to reduce the incidence of grade 2 or more skin toxicity in comparison to Cream 1 (p=0.056). Overall, more participants in the Cream 1 group were required to use another topical treatment at weeks 8 (p=0.049) and 9 (p=0.01). Conclusion The natural oil-based emulsion containing allantoin appears to have similar effects for managing skin toxicity compared to aqueous cream up to week 5, however, it becomes significantly less effective at later weeks into the radiation treatment and beyond treatment completion (week 6 and beyond). There were no major differences in pain, itching and skin-related quality of life. In light of these results, clinicians and patients can base their decision on costs and preferences. Overall, aqueous cream appears to be a more preferred option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid increase of the ultraviolet radiation (UVR)-related skin cancer incidence has attracted more and more public attention during the last few decades. Prevention and treatment of UVR-related skin cancer has become an important public health issue in the United States. Recent studies indicate that mutations in ras and/or p53 genes may be involved in UVR-induced skin tumor development but the precise molecular mechanism remains unclear. In this study, alterations of H-ras and p53 genes were investigated in different stages of carcinogenesis in a chronic UVR (solar simulator) exposure-induced Sencar mouse skin carcinogenesis model in order to clarify the role of the alterations of these genes during the skin carcinogenesis process and to further understand the mechanisms by which UVR causes skin cancer.^ Positive ras-p21 staining in cell membranes and cytosol were detected in 18/33 (55%) of squamous cell carcinomas (SCCs), but were not detected in UV-exposed skin, papillomas, or spindle cell tumors (SCTs). Positive staining of the malignant progression marker K13 was found in 17/33 (52%) of SCCs only. A significant positive correlation was observed between the K13 and the ras-p21 expression. Polymerase chain reaction (PCR)-based single strand conformation polymorphism (SSCP) analysis and gene sequencing analysis revealed three point mutations, one (codon 56) in UV-exposed non-tumor bearing skin and the other two (codons 21 and 13) in SCCs. No UV-specific mutation patterns were found.^ Positive p53 nuclear staining was found in 10/37 (27%) of SCCs and 12/24 (50%) of SCTs, but was not detected in normal skin or papillomas. PCR-based SSCP and sequencing analysis revealed eight point mutations in exons 5 and 6 (four in SCTs, two in SCCs, and two in UV-exposed skin) including six C-T or C-A transitions. Four of the mutations occurred at a dipyrimidine (CC) sequence. The pattern of the mutations indicated that the mutagenic lesions were induced by UVR.^ These results indicate that overexpression of ras-p21 in conjunction with aberrant expression of K13 occurred frequently in UVR-induced SCCs in Sencar mouse skin. The point mutation in the H-ras gene appeared to be a rare event in UVR skin carcinogenesis and may not be responsible for overexpression of ras-p21. UVR-induced P53 gene alteration is a frequent event in UVR-induced SCCs and later stage SCT tumors in Sencar mice skin, suggesting the p53 gene mutation plays an important role in skin tumor malignant progression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To provide an overview and a critical appraisal of systematic reviews (SRs) of published interventions for the prevention/management of radiation dermatitis. Methods and Materials: We searched Medline, CINAHL, Embase, and the Cochrane Library. We also manually searched through individual reference lists of potentially eligible articles and a number of key journals in the topic area. Two authors screened all potential articles and included eligible SRs. Two authors critically appraised and extracted key findings from the included reviews using AMSTAR (the measurement tool for “assessment of multiple systematic reviews”). Results: Of 1837 potential titles, 6 SRs were included. A number of interventions have been reported to be potentially beneficial for managing radiation dermatitis. Interventions evaluated in these reviews included skin care advice, steroidal/nonsteroidal topical agents, systemic therapies, modes of radiation delivery, and dressings. However, all the included SRs reported that there is insufficient evidence supporting any single effective intervention. The methodological quality of the included studies varied, and methodological shortfalls in these reviews might create biases to the overall results or recommendations for clinical practice. Conclusions: An up-to-date high-quality SR in the prevention/management of radiation dermatitis is needed to guide practice and direction for future research. We recommend that clinicians or guideline developers critically evaluate the information of SRs in their decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Despite the technologic advances, radiation dermatitis is still a prevalent and distressing symptom in patients with cancer undergoing radiotherapy. Systematic reviews (SRs) are regarded as level I evidence providing direction for clinical practice and guidelines. This overview aims to provide a critical appraisal of SRs published on interventions for the prevention/management of radiation dermatitis. Methodology: We searched the following electronic databases: MEDLINE, CINAHL, EMBASE, and the Cochrane Library (up to Feb 2012). We also hand-searched reference lists of potentially eligible articles and a number of key journals in the area. Two authors screened all potential articles and included eligible SRs. Two authors critically appraised and extracted key findings from the included reviews using the “A Measurement Tool to Assess Systematic Reviews” (AMSTAR). Results: Of 1837 potential titles, six SRs were included. A number of interventions have been reported to be potentially beneficial for managing radiation dermatitis. Interventions evaluated in these reviews included skin care advice, steroidal/non-steroidal topical agents, systematic therapies, modes of radiation delivery, and dressings. However, all the included SRs reported that there is insufficient evidence supporting any single effective intervention. The methodological quality of the included studies varied, and methodological shortfalls in these reviews may create biases to the overall results or recommendations for clinical practice. Conclusions and implications: An up-to-date high quality SR in preventing/managing radiation dermatitis is needed to guide practice and direction for future research. Clinicians or guideline developers are recommended to critically evaluate the information of SRs in their decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To the Editor; It was with interest that I read the recent article by Zhang et al. published in Supportive Care in Cancer [1]. This paper highlighted the importance of radiodermatitis (RD) being an unresolved and distressing clinical issue in patients with cancer undergoing radiation therapy. However, I am concerned with a number of clinical and methodological issues within this paper: (i) the clinical and operational definition of prophylaxis and treatment of RD; (ii) the accuracy of the identification of trials; and (iii) the appropriateness of the conduct of the meta-analyses...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The content was printed on only one side of the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The content was printed on only one side of the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marked differences were observed in proximate biochemical compositions of the skin and muscle of white pomfret. The skin showed comparatively higher content of extractable lipids and was more susceptible to radiation-induced oxidative changes like development of rancid odours and yellow discolouration than the muscle. Irradiation of skin samples under vacuum suppressed these changes. The present paper also reports on the efficacy of vacuum packaging in controlling oxidative rancidity and yellow discolouration in white pomfret skin subjected to irradiation and subsequent storage at 0-2°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemiluminescence (CL) emission from three kinds of polyethylene, HDPE, LLDPE and LDPE, which had been exposed to 80 kGy dose from Co-60 in both air and nitrogen, has been examined. CL measurement was done under both nitrogen and oxygen atmosphere. The results show that the CL emission from irradiated samples does not result from irradiation itself, but from the oxidation reactions occurring during and after irradiation. Addition of 1 phr of an antioxidant, Irganox 1010, can effectively inhibit the radiation induced oxidation in LLDPE and LDPE. In the case of HDPE, however, it was found that pure HDPE has the best resistance to radiation-induced oxidation of the polymers examined in this work. However, incorporation of Irganox 1010 was found to have not only a stabilizing effect against radiation induced oxidation, but also to promote the oxidation in some cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent track structure modelling studies indicate that radiation induced damage to DNA consists of a spectrum of different lesions of varying complexity. There is considerable evidence to suggest that, in repair-proficient systems, it is only the small proportion of more complex forms that is responsible for most of the biological effect. The complex lesions induced consist initially of clustered radical sites and a knowledge of their special chemistry is important in modelling how they react to form the more stable products that are processed by the repair systems. However, much of the current understanding of the chemical stage of radiation has developed from single-radical systems and there is a need to translate this to the more complex reactions that are likely to occur at the important multiple radical sites. With low LET radiation, DNA dsb may derive either from single-radical attack that damages both strands by a transfer mechanism, or from pairs of radical sites induced in close proximity, with one or more radical on each strand. With high LET radiation, modelling studies indicate that there is an increased probability of dsb arising from sites with more than two radical centres, leading to a greater frequency of more complex types of break. The spectrum of these lesions depends on the overall outcome of consecutive physical and chemical processes. The initial pattern of radical damage is determined by the energy depositions on and around the DNA, according to the type of radiation. This pattern is then modified by scavengers that inhibit the formation of radicals on the DNA, and by agents that either chemically repair (e.g. thiols) or fix (e.g. oxygen) a large fraction of these radicals. The reaction kinetics associated with clustered radical sites will differ from those of single sites: (1) because of the opportunities for interactions between the radicals themselves; and (2) because certain endpoints, e.g. a dsb, may require a combination of the products of two or more radicals. Fast response techniques using pulsed low and high LET irradiation have been established to measure the reactions of radical sites on pBR322 plasmid DNA with oxygen and thiols with a view to obtaining information about cluster size. This paper describes experimental approaches to explore the role of the chemical stage of the radiation effect in relation to lesion complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9 +/- 0.5 h and a slow component with a half-life of 16 +/- 9 h. For a particles, a fast component with a half-life of 0.7 +/- 0.4 h and a slow component with a half-life of 12 5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37 +/- 0.12) relative to low-LET radiation (0.22 +/- 0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites. (c) 2005 by Radiation Research Society.